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An uppercase A, B, or C after each question (or part question) number indicates the rough
degree of di�culty.

The Klein-Gordon and Dirac equations

1. (a A) By applying the minimal substitution prescription p
µ
! p

µ
� qA

µ to the Klein-Gordon
equation, obtain a covariant equation describing a spin zero particle of charge q in the presence
of an electromagnetic potential Aµ(x) . Show that the resulting equation is invariant under the
charge conjugation operation �! �

c = �
⇤, q ! �q .

(b A) Apply the minimal substitution prescription to the Dirac equation, and show that the
resulting equation is invariant under the charge conjugation operation  !  

c = C( )T ,
q ! �q, provided the 4⇥ 4 matrix C satisfies the relation C�

µT
C

�1 = ��
µ.

(c A) Show that, in the Pauli-Dirac representation, a suitable choice for C is C = i�
2
�
0.

(d B) Find the result of applying the charge conjugation operation to the plane-wave solutions
u1(p)e�ip.x and u2(p)e�ip.x defined in the lecture notes.

Dirac gamma matrix algebra and trace theorems

2. Defining 6a ⌘ �
µ
aµ and using �µ�⌫ + �

⌫
�
µ = 2gµ⌫ , prove the following results:

(a A) The trace of the product of an odd number of �-matrices is zero

(b A) Tr(�µ�⌫) = 4gµ⌫ , Tr(6a6b) = 4(a · b)

(c B) Tr(�µ�⌫����) = 4[gµ⌫g�� + g
µ�
g
⌫�

� g
µ�
g
⌫�]

Tr(6a6b6c6d) = 4[(a · b)(c · d) + (a · d)(b · c)� (a · c)(b · d)]
Tr(6a�µ6b�µ) = �8(a · b)

(d A) �µ6a�µ = �2 6a

(e A) �µ6a6b�µ = 4(a · b)
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(f B) �µ6a6b6c�µ = �2 6c6b6a.

(g A) Tr(�5) = 0

(h B) Tr(�5�µ�⌫) = 0, Tr(�5a/b/) = 0

(i C) Tr(�5�µ�⌫����) = 4i✏µ⌫��, Tr(�5a/b/c/d/) = 4i✏µ⌫��aµb⌫c�d�

[Hint: Useful tricks are to use Tr(ABC) = Tr(BCA), and to insert (�5)2 = 1 into a trace and
then use �µ�5 = ��

5
�
µ.]

[✏µ⌫�� is the totally antisymmetric Levi-Civita tensor defined as

✏
µ⌫�� =

8
><

>:

�1 if µ⌫�� is an even permutation of 0123,

+1 if µ⌫�� is an odd permutation of 0123,

0 if any two indices are the same.

Particle decay

3. The Lorentz-invariant matrix element for the decay ⇡�
! µ

�
⌫µ is given by

Mf i =
GF
p
2
f⇡ p1µu(p3)�

µ(1� �
5)v(p4) ,

where p1 is the four-momentum of the ⇡�, of spin zero, p3 and p4 are the four-momenta of the
µ
� and ⌫µ, respectively, and f⇡ is a constant.

(a B) Show that, summed over all possible spin states of the muon, the ⇡�
! µ

�
⌫µ decay rate

is proportional to

2(p1 · p3)(p1 · p4)�m
2

⇡(p3 · p4) +m⌫

⇥
2(p1 · p3)(p1 · s4)�m

2

⇡(p3 · s4)
⇤
,

where s4 is a four-vector describing the anti-neutrino spin state, defined by

v(p4)v(p4) ⌘ (p/4 �m⌫)
1

2
(1 + �

5
s/4).

For a positive-helicity antineutrino, the spin four-vector sµ is given by

s
µ
4
=

1

m⌫
(p⇤, 0, 0, E⇤

⌫) ,

while for a negative-helicity neutrino it has opposite sign. Hence show that the decay rate is
proportional to

m
2

µ(m
2

⇡ �m
2

µ) +m
2

⌫(m
2

⇡ + 2m2

µ)�m
4

⌫ ± 2(m2

µ �m
2

⌫)m⇡p
⇤
,

2



where p
⇤ is the momentum of the antineutrino in the ⇡ rest frame, and the + (�) sign corre-

sponds to decay into positive-helicity (negative-helicity) antineutrinos.

(b C) Assuming m⌫ ⌧ m⇡ and m⌫ ⌧ mµ, show that, to order m
2

⌫ , the fraction of negative-
helicity antineutrinos produced in ⇡� decay is given by

R# ⇡
m

2

⌫

m2
µ

✓
1�

m
2

µ

m2
⇡

◆�2

.

Evaluate R# for an assumed antineutrino mass of 0.1 eV .

Quantum fields

4 A. Show that if  and  ⇤ are taken as independent classical fields, the Lagrangian density

L =
~
2i

✓
 
@ ⇤

@t
� ⇤@ 

@t

◆
�

~2
2m

r ·r ⇤
� V (r) ⇤ 

leads to the Schrödinger equation

i~@ 
@t

= �
~2
2m

r2 + V (r) 

and its complex conjugate. What are the momentum densities conjugate to  and  ⇤ ? Deduce
the Hamiltonian density, and verify that integrating it over all space gives the usual expression
for the energy.

The Dirac field

5 A. The Fourier representation of the Dirac field operator is

 ̂(r, t) =

Z
d
3k

(2⇡)32!

X

s

h
ĉs(k)us(k)e

�ik·x + d̂
†
s(k)vs(k)e

+ik·x
i

where k
µ = (!,k) and ! =

p
k2 +m2. The creation and annihilation operators satisfy the

anticommutation relations

{ĉs(k), ĉ
†
s0(k

0)} = {d̂s(k), d̂
†
s0(k

0)} = (2⇡)3 2! �ss0�
3(k� k0) ,

all other anticommutators being zero. Show that this implies that the field and its conjugate
momentum density satisfy the anticommutation relation

{ ̂↵(r, t), ⇡̂�(r
0
, t)} = i �↵��

3(r� r0)

where ⇡̂ = i ̂
†, and ↵ and � are spinor component labels.

Show also that the normal-ordering properties of the creation and annihilation operators lead
to the relation

: ̂�(y) ̂↵(x): = �: ̂↵(x) ̂�(y):
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for the normal-ordered products of field operator components at spacetime points x and y .

The charge operator for a Dirac field

6 B. Show that the standard particle and antiparticle spinors us(k), vs(k) in the Pauli-Dirac repre-
sentation satisfy the relations

u
†
s(k)us0(k) = v

†
s(k)vs0(k) = 2!�ss0

u
†
s(k)vs0(�k) = v

†
s(k)us0(�k) = 0

For a free spin-half particle described by a field operator  ̂(x), verify that the current

Ĵ
µ(x) =  ̂(x)�µ ̂(x)

is conserved, and show that it leads to a conserved (normal-ordered) charge operator

:Q̂: =

Z
d3kN(k)

X

s

h
ĉ
†
s(k)ĉs(k)� d̂

†
s(k)d̂s(k)

i
.

Show that the single-particle states ĉ†s(k) |0i and d̂
†
s(k) |0i are eigenstates of :Q̂: and obtain the

corresponding eigenvalues.
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