GAUGE FIELD THEORY

Examples Sheet 1

An uppercase A, B, or C after each question (or part question) number indicates the rough degree of difficulty.

The Klein-Gordon and Dirac equations

1. (a A) By applying the minimal substitution prescription $p^{\mu} \rightarrow p^{\mu}-q A^{\mu}$ to the Klein-Gordon equation, obtain a covariant equation describing a spin zero particle of charge q in the presence of an electromagnetic potential $A^{\mu}(x)$. Show that the resulting equation is invariant under the charge conjugation operation $\phi \rightarrow \phi^{c}=\phi^{*}, q \rightarrow-q$.
(b A) Apply the minimal substitution prescription to the Dirac equation, and show that the resulting equation is invariant under the charge conjugation operation $\psi \rightarrow \psi^{c}=C(\bar{\psi})^{T}$, $q \rightarrow-q$, provided the 4×4 matrix C satisfies the relation $C \gamma^{\mu T} C^{-1}=-\gamma^{\mu}$.
(c A) Show that, in the Pauli-Dirac representation, a suitable choice for C is $C=i \gamma^{2} \gamma^{0}$.
(d B) Find the result of applying the charge conjugation operation to the plane-wave solutions $u_{1}(p) e^{-i p . x}$ and $u_{2}(p) e^{-i p . x}$ defined in the lecture notes.

Dirac gamma matrix algebra and trace theorems

2. Defining $\not \subset \equiv \gamma^{\mu} a_{\mu}$ and using $\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}$, prove the following results:
(a A) The trace of the product of an odd number of γ-matrices is zero
(b A) $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu}, \quad \operatorname{Tr}(\phi b)=4(a \cdot b)$
(c B) $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\sigma} \gamma^{\lambda}\right)=4\left[g^{\mu \nu} g^{\sigma \lambda}+g^{\mu \lambda} g^{\nu \sigma}-g^{\mu \sigma} g^{\nu \lambda}\right]$
$\operatorname{Tr}(d \phi d d)=4[(a \cdot b)(c \cdot d)+(a \cdot d)(b \cdot c)-(a \cdot c)(b \cdot d)]$ $\operatorname{Tr}\left(d \gamma^{\mu} b \gamma_{\mu}\right)=-8(a \cdot b)$
(d A) $\gamma_{\mu} \not d \gamma^{\mu}=-2 \not d$
(e A) $\gamma_{\mu} d \phi \gamma^{\mu}=4(a \cdot b)$
(f B) $\gamma_{\mu} d b d \not \gamma^{\mu}=-2 \phi b d d$.
(g A) $\operatorname{Tr}\left(\gamma^{5}\right)=0$
(h B) $\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu}\right)=0, \quad \operatorname{Tr}\left(\gamma^{5} \phi \phi\right)=0$
(i C) $\left.\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\sigma}\right)=4 i \epsilon^{\mu \nu \lambda \sigma}, \quad \operatorname{Tr}\left(\gamma^{5} d\right\rangle b \ell d\right)=4 i \epsilon^{\mu \nu \lambda \sigma} a_{\mu} b_{\nu} c_{\lambda} d_{\sigma}$
[Hint: Useful tricks are to use $\operatorname{Tr}(A B C)=\operatorname{Tr}(B C A)$, and to insert $\left(\gamma^{5}\right)^{2}=1$ into a trace and then use $\gamma^{\mu} \gamma^{5}=-\gamma^{5} \gamma^{\mu}$.]
$\left[\epsilon^{\mu \nu \lambda \sigma}\right.$ is the totally antisymmetric Levi-Civita tensor defined as

$$
\epsilon^{\mu \nu \lambda \sigma}=\left\{\begin{aligned}
-1 & \text { if } \mu \nu \lambda \sigma \text { is an even permutation of } 0123 \\
+1 & \text { if } \mu \nu \lambda \sigma \text { is an odd permutation of } 0123 \\
0 & \text { if any two indices are the same. }
\end{aligned}\right.
$$

Particle decay

3. The Lorentz-invariant matrix element for the decay $\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ is given by

$$
M_{\mathrm{fi}}=\frac{G_{\mathrm{F}}}{\sqrt{2}} f_{\pi} p_{1 \mu} \bar{u}\left(p_{3}\right) \gamma^{\mu}\left(1-\gamma^{5}\right) v\left(p_{4}\right)
$$

where p_{1} is the four-momentum of the π^{-}, of spin zero, p_{3} and p_{4} are the four-momenta of the μ^{-}and $\bar{\nu}_{\mu}$, respectively, and f_{π} is a constant.
(a B) Show that, summed over all possible spin states of the muon, the $\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ decay rate is proportional to

$$
2\left(p_{1} \cdot p_{3}\right)\left(p_{1} \cdot p_{4}\right)-m_{\pi}^{2}\left(p_{3} \cdot p_{4}\right)+m_{\nu}\left[2\left(p_{1} \cdot p_{3}\right)\left(p_{1} \cdot s_{4}\right)-m_{\pi}^{2}\left(p_{3} \cdot s_{4}\right)\right]
$$

where s_{4} is a four-vector describing the anti-neutrino spin state, defined by

$$
v\left(p_{4}\right) \bar{v}\left(p_{4}\right) \equiv\left(\not p_{4}-m_{\nu}\right) \frac{1}{2}\left(1+\gamma^{5} \$_{4}\right) .
$$

For a positive-helicity antineutrino, the spin four-vector s^{μ} is given by

$$
s_{4}^{\mu}=\frac{1}{m_{\nu}}\left(p^{*}, 0,0, E_{\nu}^{*}\right),
$$

while for a negative-helicity neutrino it has opposite sign. Hence show that the decay rate is proportional to

$$
m_{\mu}^{2}\left(m_{\pi}^{2}-m_{\mu}^{2}\right)+m_{\nu}^{2}\left(m_{\pi}^{2}+2 m_{\mu}^{2}\right)-m_{\nu}^{4} \pm 2\left(m_{\mu}^{2}-m_{\nu}^{2}\right) m_{\pi} p^{*}
$$

where p^{*} is the momentum of the antineutrino in the π rest frame, and the $+(-)$ sign corresponds to decay into positive-helicity (negative-helicity) antineutrinos.
(b C) Assuming $m_{\nu} \ll m_{\pi}$ and $m_{\nu} \ll m_{\mu}$, show that, to order m_{ν}^{2}, the fraction of negativehelicity antineutrinos produced in π^{-}decay is given by

$$
R_{\downarrow} \approx \frac{m_{\nu}^{2}}{m_{\mu}^{2}}\left(1-\frac{m_{\mu}^{2}}{m_{\pi}^{2}}\right)^{-2}
$$

Evaluate R_{\downarrow} for an assumed antineutrino mass of 0.1 eV .

Quantum fields

4 A. Show that if Ψ and Ψ^{*} are taken as independent classical fields, the Lagrangian density

$$
\mathcal{L}=\frac{\hbar}{2 i}\left(\Psi \frac{\partial \Psi^{*}}{\partial t}-\Psi^{*} \frac{\partial \Psi}{\partial t}\right)-\frac{\hbar^{2}}{2 m} \nabla \Psi \cdot \nabla \Psi^{*}-V(\mathbf{r}) \Psi^{*} \Psi
$$

leads to the Schrödinger equation

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V(\mathbf{r}) \Psi
$$

and its complex conjugate. What are the momentum densities conjugate to Ψ and Ψ^{*} ? Deduce the Hamiltonian density, and verify that integrating it over all space gives the usual expression for the energy.

The Dirac field

5 A. The Fourier representation of the Dirac field operator is

$$
\hat{\psi}(\mathbf{r}, t)=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3} 2 \omega} \sum_{s}\left[\hat{c}_{s}(\mathbf{k}) u_{s}(\mathbf{k}) e^{-i k \cdot x}+\hat{d}_{s}^{\dagger}(\mathbf{k}) v_{s}(\mathbf{k}) e^{+i k \cdot x}\right]
$$

where $k^{\mu}=(\omega, \mathbf{k})$ and $\omega=\sqrt{\mathbf{k}^{2}+m^{2}}$. The creation and annihilation operators satisfy the anticommutation relations

$$
\left\{\hat{c}_{s}(\mathbf{k}), \hat{c}_{s^{\prime}}^{\dagger}\left(\mathbf{k}^{\prime}\right)\right\}=\left\{\hat{d}_{s}(\mathbf{k}), \hat{d}_{s^{\prime}}^{\dagger}\left(\mathbf{k}^{\prime}\right)\right\}=(2 \pi)^{3} 2 \omega \delta_{s s^{\prime}} \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
$$

all other anticommutators being zero. Show that this implies that the field and its conjugate momentum density satisfy the anticommutation relation

$$
\left\{\hat{\psi}_{\alpha}(\mathbf{r}, t), \hat{\pi}_{\beta}\left(\mathbf{r}^{\prime}, t\right)\right\}=i \delta_{\alpha \beta} \delta^{3}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

where $\hat{\pi}=i \hat{\psi}^{\dagger}$, and α and β are spinor component labels.
Show also that the normal-ordering properties of the creation and annihilation operators lead to the relation

$$
: \hat{\bar{\psi}}_{\beta}(y) \hat{\psi}_{\alpha}(x):=-: \hat{\psi}_{\alpha}(x) \hat{\bar{\psi}}_{\beta}(y)
$$

for the normal-ordered products of field operator components at spacetime points x and y.

The charge operator for a Dirac field

6 B. Show that the standard particle and antiparticle spinors $u_{s}(\boldsymbol{k}), v_{s}(\boldsymbol{k})$ in the Pauli-Dirac representation satisfy the relations

$$
\begin{aligned}
& u_{s}^{\dagger}(\mathbf{k}) u_{s^{\prime}}(\mathbf{k})=v_{s}^{\dagger}(\mathbf{k}) v_{s^{\prime}}(\mathbf{k})=2 \omega \delta_{s s^{\prime}} \\
& u_{s}^{\dagger}(\mathbf{k}) v_{s^{\prime}}(-\mathbf{k})=v_{s}^{\dagger}(\mathbf{k}) u_{s^{\prime}}(-\mathbf{k})=0
\end{aligned}
$$

For a free spin-half particle described by a field operator $\hat{\psi}(x)$, verify that the current

$$
\hat{J}^{\mu}(x)=\hat{\bar{\psi}}(x) \gamma^{\mu} \hat{\psi}(x)
$$

is conserved, and show that it leads to a conserved (normal-ordered) charge operator

$$
: \hat{Q}:=\int \mathrm{d}^{3} \boldsymbol{k} N(\boldsymbol{k}) \sum_{s}\left[\hat{c}_{s}^{\dagger}(\boldsymbol{k}) \hat{c}_{s}(\boldsymbol{k})-\hat{d}_{s}^{\dagger}(\boldsymbol{k}) \hat{d}_{s}(\boldsymbol{k})\right] .
$$

Show that the single-particle states $\hat{c}_{s}^{\dagger}(\boldsymbol{k})|0\rangle$ and $\hat{d}_{s}^{\dagger}(\boldsymbol{k})|0\rangle$ are eigenstates of : \hat{Q} : and obtain the corresponding eigenvalues.

