GAUGE FIELD THEORY

Examples Sheet 2

Compton scattering

7. (a A) Show that the gauge transformation $A^{\mu} \to A^{\mu} + \partial^{\mu} \chi$ shifts the polarization vector ϵ^{μ} by an amount proportional to the vector k^{μ} .

(b B) Show that the contributions to the amplitude of the two leading-order Feynman diagrams for Compton scattering, $\gamma(k) + e^{-}(p) \rightarrow \gamma(k') + e^{-}(p')$, are not separately gauge invariant, but that their sum is.

[Hint: use the Dirac equations $\bar{u}'(p'-m) = (p-m)u = 0.$]

Compton scattering

8. When summed over the spin states of all initial and final state particles, the leading-order matrix element squared for Compton scattering, $\gamma(k) + e^{-}(p) \rightarrow \gamma(k') + e^{-}(p')$, is

$$\sum_{\text{spins}} |M_{\text{fi}}|^2 = 8e^4 \left[\frac{A_{11}}{(k \cdot p)^2} + \frac{A_{22}}{(k' \cdot p)^2} - \frac{A_{12}}{(k \cdot p)(k' \cdot p)} \right]$$

where the modulus-squared of the amplitude for each leading-order Feynman diagram contributes the terms containing A_{11} and A_{22} , while interference between the two leading-order diagrams contributes the term containing A_{12} .

(a B) Show that

$$A_{11} = \frac{1}{32} \operatorname{Tr} \left[(\not p' + m) \gamma^{\nu} (\not p + \not k + m) \gamma^{\mu} (\not p + m) \gamma_{\mu} (\not p + \not k + m) \gamma_{\nu} \right]$$

(b B) Given that

$$A_{11} = (k \cdot p)(k' \cdot p) + m^2(k \cdot p) + m^4$$

$$A_{22} = -m^2(k' \cdot p) + (k \cdot p)(k' \cdot p) + m^4 ,$$

$$A_{12} = m^2(k \cdot p) - m^2(k \cdot p') + 2m^4 ,$$

show that the differential cross section for unpolarised Compton scattering in the laboratory frame is given by

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{2m^2} \left(\frac{\omega'}{\omega}\right)^2 \left[\frac{\omega}{\omega'} + \frac{\omega'}{\omega} - 1 + \cos^2\theta\right]$$

where ω and ω' are the energies of the incoming and outgoing photons, and θ is the angle between their directions.

(c B) Show that, in the low energy limit $\omega \ll m$, the total cross section is given by the Thomson cross section

$$\sigma_{\rm T} = \frac{8\pi\alpha^2}{3m^2} \; .$$

(d C) (optional) Show that, in the high energy limit $\omega \gg m$, the total cross section is given approximately by

$$\sigma(s) \approx \frac{2\pi\alpha^2}{s} \ln \frac{s}{m^2}$$

Interacting fields: W decay

9. The decay of a W^{\pm} boson into a charged lepton ℓ^{\pm} and a neutrino (or antineutrino) is governed by interaction terms in the Lagrangian density of the form

$$-\frac{g}{2\sqrt{2}}\hat{\overline{\psi}}_{\nu}\gamma^{\mu}(1-\gamma^{5})\hat{\psi}_{\ell}\hat{W}_{\mu}-\frac{g}{2\sqrt{2}}\hat{\overline{\psi}}_{\ell}\gamma^{\mu}(1-\gamma^{5})\hat{\psi}_{\nu}\hat{W}_{\mu}^{\dagger}.$$

(a A) For the case that the (anti)neutrino, of mass m_{ν} , is described by a Dirac field with a Fourier representation of the form

$$\hat{\psi}(\mathbf{r},t) = \int \frac{d^3 \mathbf{k}}{(2\pi)^3 2\omega} \sum_s \left[\hat{c}_s(\mathbf{k}) u_s(\mathbf{k}) e^{-ik \cdot x} + \hat{d}_s^{\dagger}(\mathbf{k}) v_s(\mathbf{k}) e^{+ik \cdot x} \right] ,$$

where $\omega = \sqrt{\mathbf{k}^2 + m^2}$, show that the decays $W^+ \to \ell^+ \nu_\ell$ and $W^- \to \ell^- \overline{\nu}_\ell$ are permitted, while the decays $W^+ \to \ell^+ \overline{\nu}_\ell$ and $W^- \to \ell^- \nu_\ell$ are not.

(b B) Show that the leading order transition amplitude $S_{\rm fi} = -i \int \langle f | \hat{\mathcal{H}}_I | i \rangle d^4 x$ for the decay $W^-(p_1) \to \ell^-(p_2) \overline{\nu}_\ell(p_3)$ is given by

$$S_{\rm fi} = -i(2\pi)^4 \frac{g}{2\sqrt{2}} \bar{u}(\mathbf{p}_2) \gamma^{\mu} (1-\gamma^5) v(\mathbf{p}_3) \epsilon_{\mu}(\mathbf{p}_1) \delta^4(p_2+p_3-p_1) \ .$$

Obtain the corresponding transition amplitude for the decay $W^+ \to \ell^+ \nu_\ell$.

Scalar QED

10 B. Write down the Lagrangian density \mathcal{L} which results from applying the minimal substitution prescription to the free particle Lagrangian

$$\mathcal{L}_0 = (\partial_\mu \phi)^{\dagger} (\partial^\mu \phi) - m^2 \phi^{\dagger} \phi$$

where $\phi(x)$ is a non-Hermitian scalar field. Show that the Lagrangian \mathcal{L} is gauge invariant. Identify the interaction terms contained in \mathcal{L} and their corresponding Feynman diagram vertices.

Non-Abelian gauge symmetry

11. A non-Abelian gauge theory containing a particle multiplet Ψ possesses a local phase invariance $\Psi \to U(x)\Psi = \exp(ig\omega_j(x)T_j)\Psi$, with covariant derivative $D_\mu\Psi = (\partial_\mu + igA_\mu)\Psi$, where

$$A^{\mu}(x) = A^{\mu}_{j}(x)T_{j}$$

is a matrix of gauge fields and the T_j are generators of the symmetry group in the representation carried by the multiplet Ψ .

(a B) Show that, for infinitesimal transformations, the gauge fields A_l^{μ} transform as

$$A_l^{\mu} \to A_l^{\prime \mu} = A_l^{\mu} - \partial^{\mu} \omega_l - g f_{jkl} \omega_j A_k^{\mu} ,$$

independent of the representation carried by the multiplet Ψ .

(b C) (optional) By directly transforming the matrix field A^{μ} , show that the matrix field strength tensor

 $F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\nu}]$

transforms under a general gauge transformation as

$$F_{\mu\nu} \to U F_{\mu\nu} U^{\dagger}$$

Hence show that the term $-\frac{1}{4}F_{j}^{\mu\nu}F_{j\mu\nu}$ is gauge-invariant, where the field strength tensor $F_{j}^{\mu\nu}$ is defined as

$$F_j^{\mu\nu} \equiv \partial^\mu A_j^\nu - \partial^\nu A_j^\mu - g f_{jkl} A_k^\mu A_l^\nu \ .$$