GAUGE FIELD THEORY

Examples Sheet 2

Compton scattering

7. (a A) Show that the gauge transformation $A^{\mu} \rightarrow A^{\mu}+\partial^{\mu} \chi$ shifts the polarization vector ϵ^{μ} by an amount proportional to the vector k^{μ}.
(b B) Show that the contributions to the amplitude of the two leading-order Feynman diagrams for Compton scattering, $\gamma(k)+\mathrm{e}^{-}(p) \rightarrow \gamma\left(k^{\prime}\right)+\mathrm{e}^{-}\left(p^{\prime}\right)$, are not separately gauge invariant, but that their sum is.
[Hint: use the Dirac equations $\bar{u}^{\prime}\left(\not p^{\prime}-m\right)=(\not p-m) u=0$.]

Compton scattering

8. When summed over the spin states of all initial and final state particles, the leading-order matrix element squared for Compton scattering, $\gamma(k)+\mathrm{e}^{-}(p) \rightarrow \gamma\left(k^{\prime}\right)+\mathrm{e}^{-}\left(p^{\prime}\right)$, is

$$
\sum_{\text {spins }}\left|M_{\mathrm{fi}}\right|^{2}=8 e^{4}\left[\frac{A_{11}}{(k \cdot p)^{2}}+\frac{A_{22}}{\left(k^{\prime} \cdot p\right)^{2}}-\frac{A_{12}}{(k \cdot p)\left(k^{\prime} \cdot p\right)}\right]
$$

where the modulus-squared of the amplitude for each leading-order Feynman diagram contributes the terms containing A_{11} and A_{22}, while interference between the two leading-order diagrams contributes the term containing A_{12}.
(a B) Show that

$$
A_{11}=\frac{1}{32} \operatorname{Tr}\left[\left(\not p^{\prime}+m\right) \gamma^{\nu}(\not p \prime+\not / \nmid+m) \gamma^{\mu}(\not p \prime+m) \gamma_{\mu}\left(\not{ }^{\prime}+\not p+m\right) \gamma_{\nu}\right] .
$$

(b B) Given that

$$
\begin{aligned}
& A_{11}=(k \cdot p)\left(k^{\prime} \cdot p\right)+m^{2}(k \cdot p)+m^{4} \\
& A_{22}=-m^{2}\left(k^{\prime} \cdot p\right)+(k \cdot p)\left(k^{\prime} \cdot p\right)+m^{4}, \\
& A_{12}=m^{2}(k \cdot p)-m^{2}\left(k \cdot p^{\prime}\right)+2 m^{4},
\end{aligned}
$$

show that the differential cross section for unpolarised Compton scattering in the laboratory frame is given by

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\alpha^{2}}{2 m^{2}}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}\left[\frac{\omega}{\omega^{\prime}}+\frac{\omega^{\prime}}{\omega}-1+\cos ^{2} \theta\right]
$$

where ω and ω^{\prime} are the energies of the incoming and outgoing photons, and θ is the angle between their directions.
(c B) Show that, in the low energy limit $\omega \ll m$, the total cross section is given by the Thomson cross section

$$
\sigma_{\mathrm{T}}=\frac{8 \pi \alpha^{2}}{3 m^{2}} .
$$

(d C) (optional) Show that, in the high energy limit $\omega \gg m$, the total cross section is given approximately by

$$
\sigma(s) \approx \frac{2 \pi \alpha^{2}}{s} \ln \frac{s}{m^{2}}
$$

Interacting fields: W decay

9. The decay of a $W^{ \pm}$boson into a charged lepton $\ell^{ \pm}$and a neutrino (or antineutrino) is governed by interaction terms in the Lagrangian density of the form

$$
-\frac{g}{2 \sqrt{2}} \hat{\bar{\psi}}_{\nu} \gamma^{\mu}\left(1-\gamma^{5}\right) \hat{\psi}_{\ell} \hat{W}_{\mu}-\frac{g}{2 \sqrt{2}} \hat{\bar{\psi}}_{\ell} \gamma^{\mu}\left(1-\gamma^{5}\right) \hat{\psi}_{\nu} \hat{W}_{\mu}^{\dagger} .
$$

(a A) For the case that the (anti)neutrino, of mass m_{ν}, is described by a Dirac field with a Fourier representation of the form

$$
\hat{\psi}(\mathbf{r}, t)=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3} 2 \omega} \sum_{s}\left[\hat{c}_{s}(\mathbf{k}) u_{s}(\mathbf{k}) e^{-i k \cdot x}+\hat{d}_{s}^{\dagger}(\mathbf{k}) v_{s}(\mathbf{k}) e^{+i k \cdot x}\right]
$$

where $\omega=\sqrt{\mathbf{k}^{2}+m^{2}}$, show that the decays $W^{+} \rightarrow \ell^{+} \nu_{\ell}$ and $W^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell}$ are permitted, while the decays $W^{+} \rightarrow \ell^{+} \bar{\nu}_{\ell}$ and $W^{-} \rightarrow \ell^{-} \nu_{\ell}$ are not.
(b B) Show that the leading order transition amplitude $S_{\mathrm{fi}}=-i \int\langle f| \hat{\mathcal{H}}_{I}|i\rangle \mathrm{d}^{4} x$ for the decay $W^{-}\left(p_{1}\right) \rightarrow \ell^{-}\left(p_{2}\right) \bar{\nu}_{\ell}\left(p_{3}\right)$ is given by

$$
S_{\mathrm{fi}}=-i(2 \pi)^{4} \frac{g}{2 \sqrt{2}} \bar{u}\left(\mathbf{p}_{2}\right) \gamma^{\mu}\left(1-\gamma^{5}\right) v\left(\mathbf{p}_{3}\right) \epsilon_{\mu}\left(\mathbf{p}_{1}\right) \delta^{4}\left(p_{2}+p_{3}-p_{1}\right) .
$$

Obtain the corresponding transition amplitude for the decay $W^{+} \rightarrow \ell^{+} \nu_{\ell}$.

Scalar QED

10 B . Write down the Lagrangian density \mathcal{L} which results from applying the minimal substitution prescription to the free particle Lagrangian

$$
\mathcal{L}_{0}=\left(\partial_{\mu} \phi\right)^{\dagger}\left(\partial^{\mu} \phi\right)-m^{2} \phi^{\dagger} \phi
$$

where $\phi(x)$ is a non-Hermitian scalar field. Show that the Lagrangian \mathcal{L} is gauge invariant. Identify the interaction terms contained in \mathcal{L} and their corresponding Feynman diagram vertices.

Non-Abelian gauge symmetry

11. A non-Abelian gauge theory containing a particle multiplet Ψ possesses a local phase invariance $\Psi \rightarrow U(x) \Psi=\exp \left(i g \omega_{j}(x) T_{j}\right) \Psi$, with covariant derivative $D_{\mu} \Psi=\left(\partial_{\mu}+i g A_{\mu}\right) \Psi$, where

$$
A^{\mu}(x)=A_{j}^{\mu}(x) T_{j}
$$

is a matrix of gauge fields and the T_{j} are generators of the symmetry group in the representation carried by the multiplet Ψ.
(a B) Show that, for infinitesimal transformations, the gauge fields A_{l}^{μ} transform as

$$
A_{l}^{\mu} \rightarrow A_{l}^{\mu}=A_{l}^{\mu}-\partial^{\mu} \omega_{l}-g f_{j k l} \omega_{j} A_{k}^{\mu},
$$

independent of the representation carried by the multiplet Ψ.
(b C) (optional) By directly transforming the matrix field A^{μ}, show that the matrix field strength tensor

$$
F_{\mu \nu} \equiv \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g\left[A_{\mu}, A_{\nu}\right]
$$

transforms under a general gauge transformation as

$$
F_{\mu \nu} \rightarrow U F_{\mu \nu} U^{\dagger}
$$

Hence show that the term $-\frac{1}{4} F_{j}^{\mu \nu} F_{j \mu \nu}$ is gauge-invariant, where the field strength tensor $F_{j}^{\mu \nu}$ is defined as

$$
F_{j}^{\mu \nu} \equiv \partial^{\mu} A_{j}^{\nu}-\partial^{\nu} A_{j}^{\mu}-g f_{j k l} A_{k}^{\mu} A_{l}^{\nu}
$$

