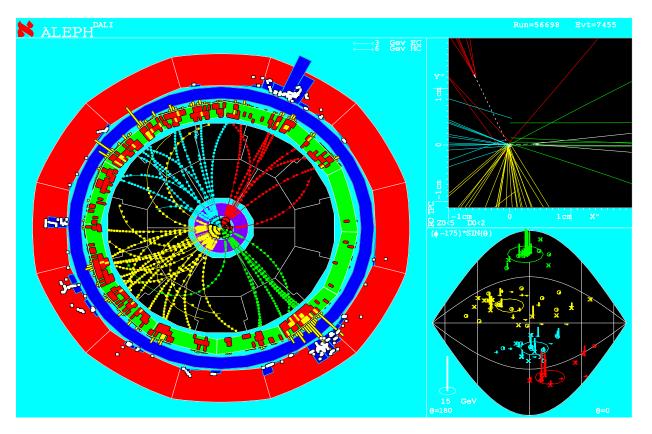
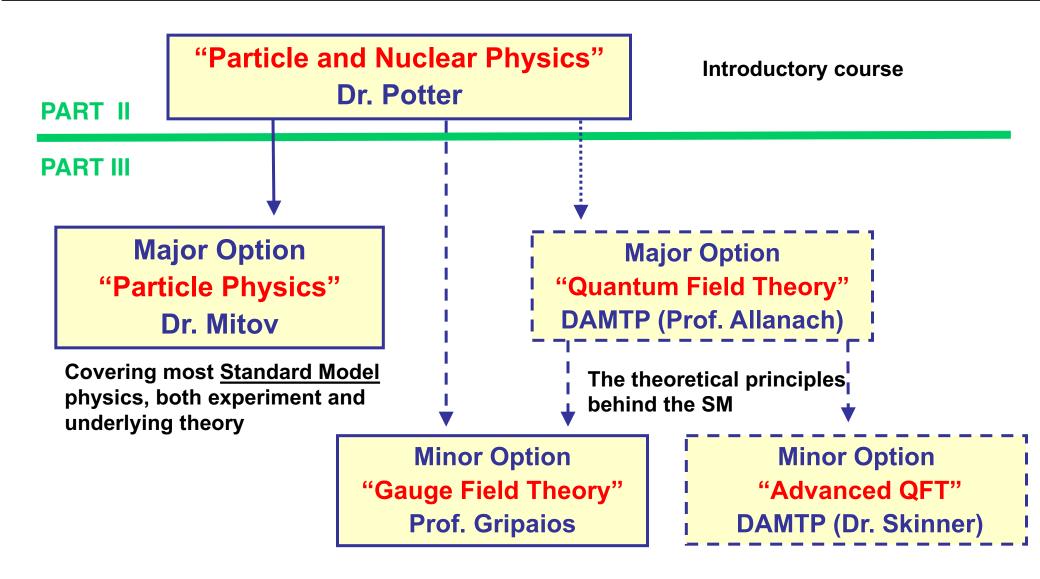
Particle Physics

Dr. Alexander Mitov



Handout 1: Introduction

Cambridge Particle Physics Courses



Course Synopsis

```
Handout 1: Introduction, Decay Rates and Cross Sections
Handout 2: The Dirac Equation and Spin
Handout 3: Interaction by Particle Exchange
Handout 4: Electron – Positron Annihilation
Handout 5: Electron – Proton Scattering
Handout 6: Deep Inelastic Scattering
Handout 7: Symmetries and the Quark Model
Handout 8: QCD and Colour
Handout 9: V-A and the Weak Interaction
Handout 10: Leptonic Weak Interactions
Handout 11: Neutrinos and Neutrino Oscillations
Handout 12: The CKM Matrix and CP Violation
Handout 13: Electroweak Unification and the W and Z Bosons
Handout 14: Tests of the Standard Model
```

- **★** Will concentrate on the modern view of particle physics with the emphasis on how theoretical concepts relate to recent experimental measurements
- ★ Aim: by the end of the course you should have a good understanding of both aspects of particle physics

Preliminaries

Web-page: http://www.precision.hep.phy.cam.ac.uk/people/mitov/teaching/

- All course material, old exam questions, corrections, interesting links etc.
- Detailed answers will posted after the supervisions (password protected)

Format of Lectures/Handouts:

- First part of each handout contains the "the course material".
- Some handouts contain <u>additional</u> theoretical background in nonexaminable appendices at the end.
- Please let me know of any corrections: adm74@cam.ac.uk

Books:

- **★** The handouts are fairly complete, however there a number of decent books:
 - "Modern Particle Physics" Mark Thomson BASED ON THIS COURSE!
 - "Particle Physics", Martin and Shaw (Wiley): fairly basic but good.
 - "Introductory High Energy Physics", Perkins (Cambridge): slightly below level of the course but well written.
 - "Introduction to Elementary Physics", Griffiths (Wiley): about right level but doesn't cover the more recent material.
 - "Quarks and Leptons", Halzen & Martin (Wiley): good graduate level textbook (slightly above level of this course).

Before we start in earnest, a few words on units/notation and a very brief "Part II refresher"...

Preliminaries: Natural Units

- S.I. UNITS: kg m s are a natural choice for "everyday" objects e.g. $M_{\rm (Dr.\ Mitov)}$ ~ 90 kg ~ O(1) kg
- not very natural in particle physics
- instead use Natural Units based on the language of particle physics
 - From Quantum Mechanics the unit of action: \hbar
 - From relativity the speed of light: C
 - From Particle Physics unit of energy: GeV (1 GeV ~ proton rest mass energy)
- **★**Units become (i.e. with the correct dimensions):

```
Energy GeV Time (\text{GeV}/\hbar)^{-1} Momentum \text{GeV}/c Length (\text{GeV}/\hbar c)^{-1} Mass \text{GeV}/c^2 Area (\text{GeV}/\hbar c)^{-2}
```

- ***** Use units in which: $\hbar = c = 1$ ' (though note both = signs are "wrong"!)
 - Now all quantities expressed in powers of GeV.

To convert back to S.I. units, need to restore missing factors of \hbar and c . Tip:

 $\hbar c$ = 197 MeV fm

Preliminaries: Heaviside-Lorentz Units

• Electron charge <code>defined</code> by Force equation: $F=rac{e^{2}}{4\piarepsilon_{0}r^{2}}$, so:

$$[e] = [F4\pi\varepsilon_0 r^2]^{\frac{1}{2}} \qquad \text{(E, L and T standing for an energy, length and time, respectively)}$$

$$= [\varepsilon_0(FL)L]^{\frac{1}{2}} \qquad \text{(recall [ET]=[\hbar])}$$

This motivates, for problems involving electric charge, units in which: $|\mathcal{E}_0=1|$

e.g. now:
$$F
ightharpoonup rac{e^2}{4\pi r^2}$$
 . Since $c=(arepsilon_0\mu_0)^{-\frac{1}{2}}=1$, $\mu_0=1$ too

Therefore, in Heaviside-Lorentz units:

$$\hbar = c = \varepsilon_0 = \mu_0 = 1$$

(i.e. measure ang mom in `hbar's, speed in `c's, permittivities in `epsilon0's, and permeabilities in `mu0's)

Unless otherwise stated, Natural Units are used throughout these handouts, $E^2=p^2+m^2$, $\vec{p}=\vec{k}$, etc.

6

Review of The Standard Model

Particle Physics is the study of:

- ★ MATTER: the fundamental constituents of the universe- the elementary particles
- **★ FORCE:** the fundamental forces of nature, i.e. the interactions between the elementary particles

Try to categorise the PARTICLES and FORCES in as simple and fundamental manner possible

- **★**Current understanding embodied in the **STANDARD MODEL**:
 - Forces between particles due to exchange of particles
 - Consistent with <u>most</u> experimental data!
 - Does not account for Dark Matter
 - But it is just a "model" with many unpredicted parameters, e.g. particle masses.
 - As such it is not the ultimate theory (if such a thing exists), there are many mysteries.

Matter in the Standard Model

★ In the Standard Model the fundamental "matter" is described by point-like spin-1/2 fermions

	LEPTONS			QUARKS		
		q	m/GeV		q	m/GeV
First	e	-1	0.0005	d	-1/3	0.3
Generation	v_1	0	≈0	u	+2/3	0.3
Second	μ^{-}	-1	0.106	S	-1/3	0.5
Generation	v_2	0	≈0	C	+2/3	1.5
Third	τ	-1	1.77	b	-1/3	4.5
Generation	v_3	0	≈0	t	+2/3	175

The masses quoted for the quarks are the "constituent masses", i.e. the effective masses for quarks confined in a bound state

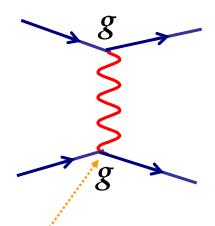
8

- In the SM there are three generations the particles in each generation are copies of each other differing only in mass. (not understood why three).
- The neutrinos are much lighter than all other particles (e.g. v_1 has m<3 eV)
 - we now know that neutrinos have non-zero mass (don't understand why so small)

Forces in the Standard Model

★Forces mediated by the exchange of spin-1 Gauge Bosons

Force	Boson(s)	JP	m/GeV
EM (QED)	Photon γ	1-	0
Weak	W [±] / Z	1-	80 / 91
Strong (QCD)	8 Gluons g	1-	0
Gravity (?)	Graviton?	2 ⁺	0



- Fundamental interaction strength is given by charge g.
- Related to the <u>dimensionless</u> coupling "constant" α

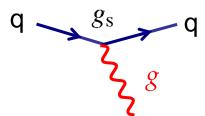
e.g. QED
$$g_{em} = e = \sqrt{4\pi\alpha\epsilon_0\hbar c}$$

- *** In Natural Units** $g=\sqrt{4\pi\alpha}$ (both g and α are dimensionless, but g contains a "hidden" $\hbar c$)
- ***** Convenient to express couplings in terms of α which, being genuinely dimensionless does not depend on the system of units (this is not true for the numerical value for e)

Standard Model Vertices

- **★Interaction of gauge bosons with fermions described by SM vertices**
- **★**Properties of the gauge bosons and nature of the interaction between the bosons and fermions determine the properties of the interaction

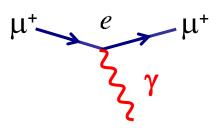
STRONG



Only quarks
Never changes
flavour

 $\alpha_S \sim 1$

EM

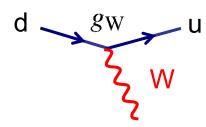


All charged fermions

Never changes flavour

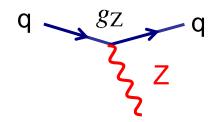
$$\alpha \simeq 1/137$$

WEAK CC



All fermions
Always changes flavour

WEAK NC

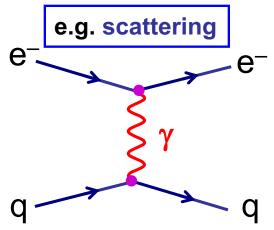


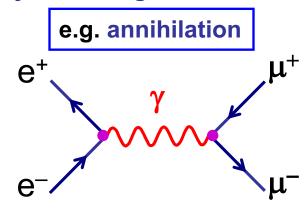
All fermions
Never changes
flavour

 $\alpha_{W/Z} \sim 1/40$

Feynman Diagrams

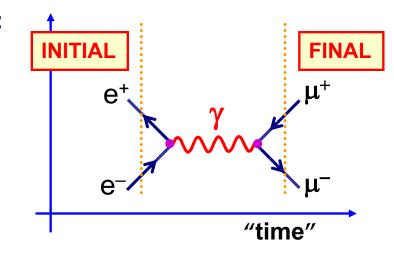
★ Particle interactions described in terms of Feynman diagrams





★ IMPORTANT POINTS TO REMEMBER:

- "time" runs from left right, only in sense that:
 - LHS of diagram is initial state
 - RHS of diagram is final state
 - Middle is "how it might have happened"
- anti-particle arrows in –ve "time" direction
- Energy, momentum, angular momentum, etc.
 conserved at all interaction vertices
- All intermediate particles are "virtual" i.e. $E^2 \neq |\vec{p}|^2 + m^2$ (handout 3)



Special Relativity and 4-Vector Notation

•Will use 4-vector notation with p^0 as the time-like component, e.g.

$$p^{\mu} = \{E, \vec{p}\} = \{E, p_x, p_y, p_z\}$$
 (contravariant) $p_{\mu} = g_{\mu\nu}p^{\nu} = \{E, -\vec{p}\} = \{E, -p_x, -p_y, -p_z\}$ (covariant)

with

$$g_{\mu\nu} = g^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

•In particle physics, usually deal with relativistic particles. Require all calculations to be Lorentz Invariant. L.I. quantities formed from 4-vector scalar products, e.g.

$$p^{\mu}p_{\mu} = E^2 - p^2 = m^2$$

 $x^{\mu}p_{\mu} = Et - \vec{p}.\vec{r}$

Invariant mass

Phase

A few words on NOTATION

Four vectors written as either: p^{μ} or p

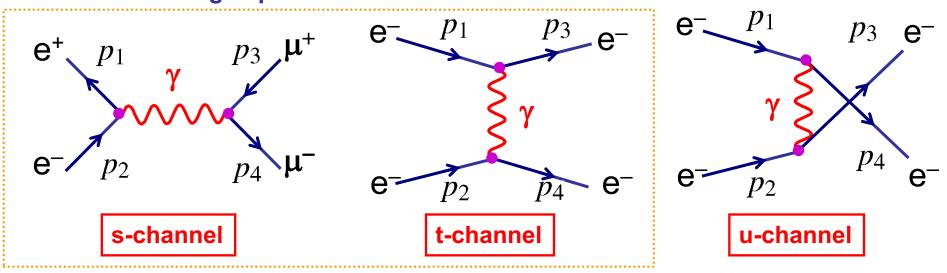
Four vector scalar product: $p^{\mu}q_{\mu}$ or p.q

Three vectors written as: \vec{p}

Quantities evaluated in the centre of mass frame: \vec{p}^*, p^* etc

Mandelstam s, t and u

- **★** In particle scattering/annihilation there are three particularly useful Lorentz Invariant quantities: s, t and u
- **\star** Consider the scattering process $1+2 \rightarrow 3+4$
- **★** (Simple) Feynman diagrams can be categorised according to the four-momentum of the exchanged particle



•Can define three kinematic variables: s, t and u from the following four vector scalar products (squared four-momentum of exchanged particle)

$$s = (p_1 + p_2)^2$$
, $t = (p_1 - p_3)^2$, $u = (p_1 - p_4)^2$

Example: Mandelstam s, t and u

$$s = (p_1 + p_2)^2$$
, $t = (p_1 - p_3)^2$, $u = (p_1 - p_4)^2$

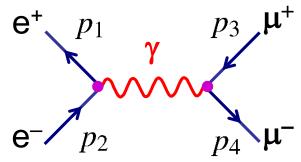
Note:

$$s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2$$

(Question 1)

14

★ e.g. Centre-of-mass energy, S:



$$s = (p_1 + p_2)^2 = (E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2$$

- Since this is a L.I. quantity, can evaluate in any frame. Choose the most convenient, i.e. the centre-of-mass frame:

$$p_1^* = (E_1^*, \vec{p}^*) \quad p_2^* = (E_2^*, -\vec{p}^*)$$

$$s = (E_1^* + E_2^*)^2$$

\starHence \sqrt{S} is the total energy of collision in the centre-of-mass frame

From Feynman diagrams to Physics

<u>Particle Physics = Precision Physics</u>

- ★ Particle physics is about building fundamental theories and testing their predictions against precise experimental data
 - •Dealing with fundamental particles and can make very precise theoretical predictions not complicated by dealing with many-body systems
 - Many beautiful experimental measurements
 - → precise theoretical predictions challenged by precise measurements
 - •For all its flaws, the Standard Model describes all experimental data! This is a (the?) remarkable achievement of late 20th century physics.

Requires understanding of theory and experimental data

- **★ Part II**: Feynman diagrams mainly used to describe how particles interact
- **★ Part III: will use Feynman diagrams and associated Feynman rules to perform calculations for many processes**
 - hopefully gain a fairly deep understanding of the Standard Model and how it explains all current data

Before we can start, need calculations for:

- Interaction cross sections;
- Particle decay rates;

The first five lectures

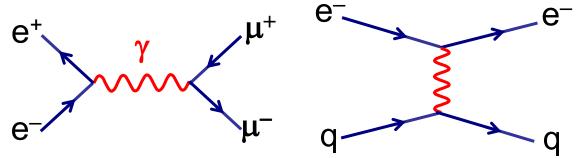
★ Aiming towards a proper calculation of decay and scattering processes

Will concentrate on:

•
$$e^+e^- \rightarrow \mu^+\mu^-$$

$$\bullet e^- q \rightarrow e^- q$$

(e⁻q→e⁻q to probe proton structure)



▲ Need <u>relativistic</u> calculations of particle decay rates and cross sections:

$$\sigma = \frac{|M_{fi}|^2}{\text{flux}} \times (\text{phase space})$$

▲ Need <u>relativistic</u> treatment of spin-half particles:

Dirac Equation

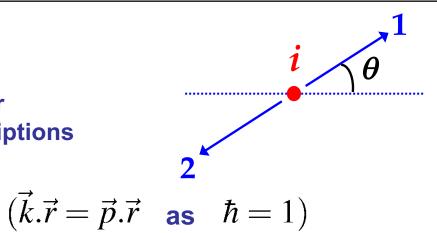
- ▲ Need <u>relativistic</u> calculation of interaction Matrix Element: Interaction by particle exchange and Feynman rules
- + and a few mathematical tricks along, e.g. the Dirac Delta Function

Start with single particle decay rate and work up

Consider the two-body decay

$$i \rightarrow 1+2$$

 Want to calculate the decay rate in first order perturbation theory using plane-wave descriptions of the particles (Born approximation):



$$\psi_1 = Ne^{i(\vec{p}.\vec{r}-Et)}$$
$$= Ne^{-ip.x}$$

where
$$N$$
 is the normalisation and $p.x = p^{\mu}x_{\mu}$

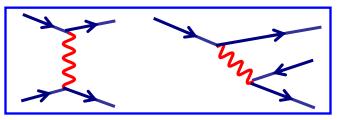
For decay rate calculation need to know:

- Wave-function normalisation
- Transition matrix element from perturbation theory
- Expression for the density of states

All in a Lorentz Invariant form

Cross Sections and Decay Rates

 In particle physics we are mainly concerned with particle interactions and decays, i.e. transitions between states



- these are the experimental observables of particle physics
- Calculate <u>transition rates</u> from Fermi's Golden Rule Form assumes one

$$\Gamma_{fi} = 2\pi |T_{fi}|^2 \rho(E_f)$$

particle per unit volume and $\int \psi^* \psi dV = 1$

is number of transitions per unit time from initial state Γ_{fi} $|i\rangle$ to final state $\langle f|$ – not Lorentz Invariant!

 T_{fi} is Transition Matrix Element

$$T_{fi} = \langle f|\hat{H}|i \rangle + \sum_{j \neq i} rac{\langle f|\hat{H}|j \rangle \langle j|\hat{H}|i
angle}{E_i - E_j} + ...$$
 \hat{H} is the perturbing Hamiltonian

 $\rho(E_f)$ is density of final states

★ Rates depend on MATRIX ELEMENT and DENSITY OF STATES

the ME contains the fundamental particle physics

just kinematics

Non-relativistic Phase Space (revision)

- Apply boundary conditions ($\vec{p} = \hbar \vec{k}$):
- Wave-function vanishing at box boundaries
 - quantised particle momenta:

$$p_x = \frac{2\pi n_x}{a}; \ p_y = \frac{2\pi n_y}{a}; \ p_z = \frac{2\pi n_z}{a}$$

Volume of single state in momentum space:

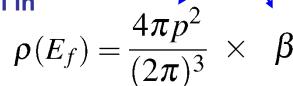
$$\left(\frac{2\pi}{a}\right)^3 = \frac{(2\pi)^3}{V}$$

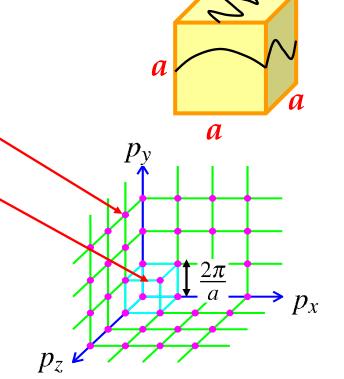
 Normalising to one particle/unit volume gives number of states in element: $d^3\vec{p} = dp_x dp_y dp_z$

$$dn = \frac{d^3\vec{p}}{\frac{(2\pi)^3}{V}} \times \frac{1}{V} = \frac{d^3\vec{p}}{(2\pi)^3}$$

$$ho(E_f)=\left|rac{\mathrm{d}n}{dE}
ight|_{E_f}=\left|rac{\mathrm{d}n}{\mathrm{d}|ec{p}|}rac{\mathrm{d}|ec{p}|}{\mathrm{d}E}
ight|_{E_f}$$
 with $p=eta E$ ntal shell in $ho(E_f)=rac{4\pi p^2}{(2\pi)^3} imeseta$

$$(\mathrm{d}^3\vec{p} = 4\pi p^2 \mathrm{d}p)$$





19

Dirac δ Function

• In the relativistic formulation of decay rates and cross sections we will make use of the Dirac δ function: "infinitely narrow spike of unit area"

$$\delta(x-a) \int_{-\infty}^{+\infty} \delta(x-a) dx = 1$$

$$\int_{-\infty}^{+\infty} f(x) \delta(x-a) dx = f(a)$$

ullet Any function with the above properties can represent $\,\delta(x)\,$

e.g.
$$\delta(x) = \lim_{\sigma \to 0} \frac{1}{\sqrt{2\pi}\sigma} e^{-\left(\frac{x^2}{2\sigma^2}\right)}$$
 (an infinitesimally narrow Gaussian)

• In relativistic quantum mechanics delta functions prove extremely useful for integrals over phase space, e.g. in the decay $a \rightarrow 1+2$

$$\int \dots \delta(E_a - E_1 - E_2) dE$$
 and $\int \dots \delta^3(\vec{p}_a - \vec{p}_1 - \vec{p}_2) d^3\vec{p}$

express energy and momentum conservation

Start from the definition of a delta function

$$\int_{y_1}^{y_2} \delta(y) dy = \begin{cases} 1 & \text{if } y_1 < 0 < y_2 \\ 0 & \text{otherwise} \end{cases}$$

• Now express in terms of y = f(x) where $f(x_0) = 0$ and then change variables

$$\int_{x_1}^{x_2} \delta(f(x)) \frac{\mathrm{d}f}{\mathrm{d}x} \mathrm{d}x = \begin{cases} 1 & \text{if } x_1 < x_0 < x_2 \\ 0 & \text{otherwise} \end{cases}$$

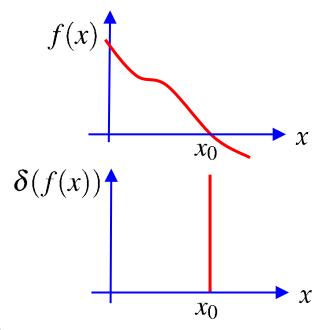
 From properties of the delta function (i.e. here only non-zero at x_0)

$$\left| \frac{\mathrm{d}f}{\mathrm{d}x} \right|_{x_0} \int_{x_1}^{x_2} \delta(f(x)) \mathrm{d}x = \begin{cases} 1 & \text{if } x_1 < x_0 < x_2 \\ 0 & \text{otherwise} \end{cases}$$

Rearranging and expressing the RHS as a delta function

$$\int_{x_1}^{x_2} \delta(f(x)) dx = \frac{1}{|df/dx|_{x_0}} \int_{x_1}^{x_2} \delta(x - x_0) dx$$

$$\delta(f(x)) = \left| \frac{\mathrm{d}f}{\mathrm{d}x} \right|_{x_0}^{-1} \delta(x - x_0)$$



(1)

The Golden Rule revisited

$$\Gamma_{fi} = 2\pi |T_{fi}|^2 \rho(E_f)$$

Rewrite the expression for density of states using a delta-function

$$\rho(E_f) = \left| \frac{\mathrm{d}n}{\mathrm{d}E} \right|_{E_f} = \int \frac{\mathrm{d}n}{\mathrm{d}E} \delta(E - E_i) \mathrm{d}E$$

since $E_f = E_i$

Note: integrating over all final state energies but energy conservation now taken into account explicitly by delta function

- Hence the golden rule becomes: $\Gamma_{fi}=2\pi\int |T_{fi}|^2\delta(E_i-E)\mathrm{d}n$ the integral is over all "allowed" final states of any energy
- For dn in a two-body decay, only need to consider one particle : mom. conservation fixes the other

$$\Gamma_{fi} = 2\pi \int |T_{fi}|^2 \delta(E_i - E_1 - E_2) \frac{d^3 \vec{p}_1}{(2\pi)^3}$$

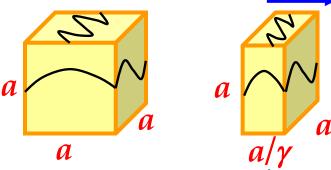
 $i \theta$ $dn = \frac{d^3 \vec{p}}{(2\pi)^3}$

• However, can include momentum conservation explicitly by integrating over the momenta of both particles and using another δ -fn

$$\Gamma_{fi} = (2\pi)^4 \int |T_{fi}|^2 \delta(E_i - E_1 - E_2) \delta^3(\vec{p}_i - \vec{p}_1 - \vec{p}_2) \underbrace{\frac{\mathrm{d}^3 \vec{p}_1}{(2\pi)^3} \frac{\mathrm{d}^3 \vec{p}_2}{(2\pi)^3}}_{\text{Density of states}}$$

Lorentz Invariant Phase Space

- In non-relativistic QM normalise to one particle/unit volume: $\int m{\psi}^* m{\psi} \mathrm{d}V = 1$
- When considering relativistic effects, volume contracts by $\gamma = E/m$



- $oldsymbol{\cdot}$ Particle density therefore increases by $oldsymbol{\gamma} = E/m$
 - **★ Conclude that a relativistic invariant wave-function normalisation needs to be proportional to** *E* **particles per unit volume**
- Usual convention: Normalise to 2E particles/unit volume $\int \psi'^* \psi' dV = 2E$
- Previously used ψ normalised to 1 particle per unit volume $\int \psi^* \psi \mathrm{d}V = 1$
- Hence $\psi' = (2E)^{1/2} \psi$ is normalised to 2E per unit volume
- Define Lorentz Invariant Matrix Element, M_{fi} , in terms of the wave-functions normalised to $\,2E\,$ particles per unit volume

$$M_{fi} = \langle \psi_1'.\psi_2'...|\hat{H}|...\psi_{n-1}'\psi_n' \rangle = (2E_1.2E_2.2E_3....2E_n)^{1/2}T_{fi}$$

23

$$i \rightarrow 1 + 2$$

$$M_{fi} = \langle \psi_1' \psi_2' | \hat{H}' | \psi_i' \rangle$$

$$= (2E_i.2E_1.2E_2)^{1/2} \langle \psi_1 \psi_2 | \hat{H}' | \psi_i \rangle$$

$$= (2E_i.2E_1.2E_2)^{1/2} T_{fi}$$

\star Now expressing T_{fi} in terms of M_{fi} gives

$$\Gamma_{fi} = \frac{(2\pi)^4}{2E_i} \int |M_{fi}|^2 \delta(E_i - E_1 - E_2) \delta^3(\vec{p}_a - \vec{p}_1 - \vec{p}_2) \frac{\mathrm{d}^3 \vec{p}_1}{(2\pi)^3 2E_1} \frac{\mathrm{d}^3 \vec{p}_2}{(2\pi)^3 2E_2}$$

Note:

- ullet M_{fi} uses relativistically normalised wave-functions. It is Lorentz Invariant
- $\frac{\mathrm{d}^3 \vec{p}}{(2\pi)^3 2E}$ is the Lorentz Invariant Phase Space for each final state particle the factor of 2E arises from the wave-function normalisation (prove this in Question 2)
- This form of Γ_{fi} is simply a rearrangement of the original equation but the integral is now frame independent (i.e. L.I.)
- Γ_{fi} is inversely proportional to E_i , the energy of the decaying particle. This is exactly what one would expect from time dilation ($E_i = \gamma m$).
- Energy and momentum conservation in the delta functions

Decay Rate Calculations

$$\Gamma_{fi} = \frac{(2\pi)^4}{2E_i} \int |M_{fi}|^2 \delta(E_i - E_1 - E_2) \delta^3(\vec{p}_i - \vec{p}_1 - \vec{p}_2) \frac{\mathrm{d}^3 \vec{p}_1}{(2\pi)^3 2E_1} \frac{\mathrm{d}^3 \vec{p}_2}{(2\pi)^3 2E_2}$$

- ★ Because the integral is Lorentz invariant (i.e. frame independent) it can be evaluated in any frame we choose. The C.o.M. frame is most convenient
 - In the C.o.M. frame $E_i = m_i$ and $\vec{p}_i = 0$

$$\Gamma_{fi} = \frac{1}{8\pi^2 E_i} \int |M_{fi}|^2 \delta(m_i - E_1 - E_2) \delta^3(\vec{p}_1 + \vec{p}_2) \frac{\mathrm{d}^3 \vec{p}_1}{2E_1} \frac{\mathrm{d}^3 \vec{p}_2}{2E_2}$$

• Integrating over \vec{p}_2 using the δ -function:

$$\Rightarrow \Gamma_{fi} = \frac{1}{8\pi^2 E_i} \int |M_{fi}|^2 \delta(m_i - E_1 - E_2) \frac{d^3 \vec{p}_1}{4E_1 E_2}$$

$${
m \underline{now}}~E_2^2 = (m_2^2 + |ec{p}_1|^2)~$$
 since the δ-function imposes $ec{p}_2 = -ec{p}_1$

• Writing $d^3\vec{p}_1=p_1^2\mathrm{d}p_1\sin\theta\mathrm{d}\theta\mathrm{d}\phi=p_1^2\mathrm{d}p_1\mathrm{d}\Omega$

For convenience, here $|\vec{p}_1|$ is written as p_1

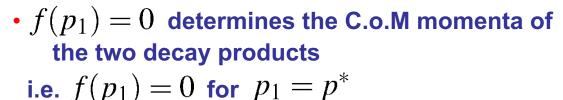
$$\Gamma_{fi} = \frac{1}{32\pi^2 E_i} \int |M_{fi}|^2 \delta \left(m_i - \sqrt{m_1^2 + p_1^2} - \sqrt{m_2^2 + p_1^2} \right) \frac{p_1^2 \mathrm{d} p_1 \mathrm{d} \Omega}{E_1 E_2}$$

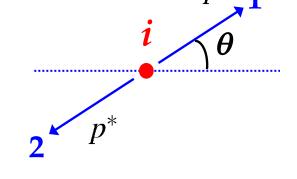
$$\Gamma_{fi} = \frac{1}{32\pi^2 E_i} \int |M_{fi}|^2 g(p_1) \delta(f(p_1)) dp_1 d\Omega$$
 (2)

where
$$g(p_1) = p_1^2/(E_1E_2) = p_1^2(m_1^2 + p_1^2)^{-1/2}(m_2^2 + p_1^2)^{-1/2}$$

and
$$f(p_1) = m_i - (m_1^2 + p_1^2)^{1/2} - (m_2^2 + p_1^2)^{1/2}$$

Note: • $\delta(f(p_1))$ imposes energy conservation.





$$\star$$
 Eq. (2) can be integrated using the property of δ – function derived earlier (eq. (1))

$$\int g(p_1)\delta(f(p_1))dp_1 = \frac{1}{|df/dp_1|_{p^*}} \int g(p_1)\delta(p_1 - p^*)dp_1 = \frac{g(p^*)}{|df/dp_1|_{p^*}}$$

where p^* is the value for which $f(p^*) = 0$

• All that remains is to evaluate ${
m d}f/{
m d}p_1$

$$\frac{\mathrm{d}f}{\mathrm{d}p_1} = -\frac{p_1}{(m_1^2 + p_1^2)^{1/2}} - \frac{p_1}{(m_2^2 + p_1^2)^{1/2}} = -\frac{p_1}{E_1} - \frac{p_1}{E_2} = -p_1 \frac{E_1 + E_2}{E_1 E_2}$$

giving:
$$\Gamma_{fi} = \frac{1}{32\pi^2 E_i} \int |M_{fi}|^2 \left| \frac{E_1 E_2}{p_1 (E_1 + E_2)} \frac{p_1^2}{E_1 E_2} \right|_{p_1 = p^*} d\Omega$$

$$= \frac{1}{32\pi^2 E_i} \int |M_{fi}|^2 \left| \frac{p_1}{E_1 + E_2} \right|_{p_1 = p^*} d\Omega$$

• But from $f(p_1)=0$, i.e. energy conservation: $E_1+E_2=m_i$

$$\Gamma_{fi} = \frac{|\vec{p}^*|}{32\pi^2 E_i m_i} \int |M_{fi}|^2 \mathrm{d}\Omega$$

In the particle's rest frame $E_i = m_i$

$$\frac{1}{\tau} = \Gamma = \frac{|\vec{p}^*|}{32\pi^2 m_i^2} \int |M_{fi}|^2 \mathrm{d}\Omega$$

(3)

VALID FOR ALL TWO-BODY DECAYS!

• p^* can be obtained from $f(p_1) = 0$

$$(m_1^2 + p^{*2})^{1/2} + (m_2^2 + p^{*2})^{1/2} = m_i$$

(Question 3)

$$p^* = \frac{1}{2m_i} \sqrt{\left[(m_i^2 - (m_1 + m_2)^2) \left[m_i^2 - (m_1 - m_2)^2 \right] \right] }$$
 (now try Questions 4 & 5)

Cross section definition

no of interactions per unit time per target incident flux

Flux = number of incident particles/ unit area/unit time

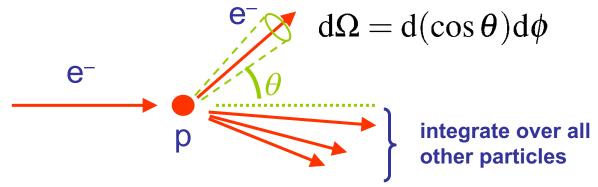
- The "cross section", σ, can be thought of as the effective crosssectional area of the target particles for the interaction to occur.
- In general this has nothing to do with the physical size of the target although there are exceptions, e.g. neutron absorption

here (σ) is the projective area of nucleus

Differential Cross section

no of particles per sec/per target into d Ω $d\Omega$ incident flux

or generally



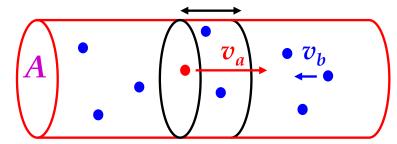
example

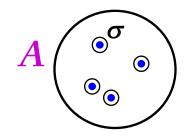
• Consider a single particle of type a with velocity, v_a , traversing a region of area

 $oldsymbol{A}$ containing $oldsymbol{n}_b$ particles of type $oldsymbol{b}$ per unit volume

$$(v_a + v_b)\delta t$$

In time δt a particle of type a traverses region containing $n_b(v_a+v_b)A\delta t$ particles of type b





★Interaction probability obtained from effective cross-sectional area occupied by the $n_b(v_a+v_b)A\delta t$ particles of type b

$$\frac{n_b(v_a+v_b)A\delta t\sigma}{A}=n_bv\delta t\sigma$$

$$[v = v_a + v_b]$$

Rate per particle of type $a = n_b v \sigma$

- Consider volume V, total reaction rate = $(n_b v \sigma).(n_a V) = (n_b V)(n_a v) \sigma$ = $N_b \phi_a \sigma$
- As anticipated:

Rate = Flux x Number of targets x cross section

Cross Section Calculations

Consider scattering process

$$1+2 \to 3+4$$

Start from Fermi's Golden Rule:

• Start from Fermi's Golden Rule:
$$\Gamma_{fi} = (2\pi)^4 \int |T_{fi}|^2 \delta(E_1 + E_2 - E_3 - E_4) \delta^3(\vec{p_1} + \vec{p_2} - \vec{p_3} - \vec{p_4}) \frac{\mathrm{d}^3 \vec{p_3}}{(2\pi)^3} \frac{\mathrm{d}^3 \vec{p_4}}{(2\pi)^3}$$
 where T_{fi} is the transition matrix for a normalisation of 1/unit volume

where T_{fi} is the transition matrix for a normalisation of 1/unit volume

- Rate/Volume = (flux of 1) × (number density of 2) × σ $= n_1(v_1+v_2)\times n_2\times \sigma$
- For 1 target particle of each species per unit volume Rate/Volume = $(v_1 + v_2)\sigma$

$$\sigma = \frac{\Gamma_{fi}}{(v_1 + v_2)}$$

$$\sigma = \underbrace{\frac{(2\pi)^4}{v_1 + v_2}} \int |T_{fi}|^2 \delta(E_1 + E_2 - E_3 - E_4) \delta^3(\vec{p}_1 + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \underbrace{\frac{\mathrm{d}^3 \vec{p}_3}{(2\pi)^3} \frac{\mathrm{d}^3 \vec{p}_4}{(2\pi)^3}}_{\text{the parts are not Lorentz Invariant}}$$

the parts are not Lorentz Invariant

- •To obtain a Lorentz Invariant form use wave-functions normalised to 2E particles per unit volume $\psi'=(2E)^{1/2}\psi$
- Again define L.I. Matrix element $\,M_{fi}=(2E_1\,2E_2\,2E_3\,2E_4)^{1/2}T_{fi}\,$

$$\sigma = \frac{(2\pi)^{-2}}{2E_1 2E_2(v_1 + v_2)} \int |M_{fi}|^2 \delta(E_1 + E_2 - E_3 - E_4) \delta^3(\vec{p}_1 + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \frac{\mathrm{d}^3 \vec{p}_3}{2E_3} \frac{\mathrm{d}^3 \vec{p}_4}{2E_4}$$

- The integral is now written in a Lorentz invariant form
- The quantity $F=2E_12E_2(v_1+v_1)$ can be written in terms of a four-vector scalar product and is therefore also Lorentz Invariant (the Lorentz Inv. Flux) $F=4\left[(p_1^\mu p_{2\mu})^2-m_1^2m_2^2\right]^{1/2} \qquad \text{(see appendix I)}$
- Consequently cross section is a Lorentz Invariant quantity

Two special cases of Lorentz Invariant Flux:

Centre-of-Mass Frame

$$F = 4E_1E_2(v_1 + v_2)$$

$$= 4E_1E_2(|\vec{p}^*|/E_1 + |\vec{p}^*|/E_2)$$

$$= 4|\vec{p}^*|(E_1 + E_2)$$

$$= 4|\vec{p}^*|\sqrt{s}$$

Target (particle 2) at rest

$$F = 4E_1E_2(v_1 + v_2)$$

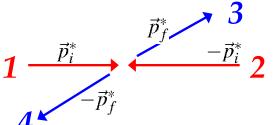
$$= 4E_1m_2v_1$$

$$= 4E_1m_2(|\vec{p}_1|/E_1)$$

$$= 4m_2|\vec{p}_1|$$

31

2→2 Body Scattering in C.o.M. Frame



• We will now apply above Lorentz Invariant formula for the interaction cross section to the most common cases used in the course. First consider
$$2\rightarrow 2$$
 scattering in C.o.M. frame

• Start from
$$\sigma = \frac{(2\pi)^{-2}}{2E_1 2E_2(v_1 + v_2)} \int |M_{fi}|^2 \delta(E_1 + E_2 - E_3 - E_4) \delta^3(\vec{p_1} + \vec{p_2} - \vec{p_3} - \vec{p_4}) \frac{\mathrm{d}^3 \vec{p_3}}{2E_3} \frac{\mathrm{d}^3 \vec{p_4}}{2E_4}$$

• Here $\vec{p}_1 + \vec{p}_2 = 0$ and $E_1 + E_2 = \sqrt{s}$

$$\Rightarrow \sigma = \frac{(2\pi)^{-2}}{4|\vec{p}_{i}^{*}|\sqrt{s}} \int |M_{fi}|^{2} \delta(\sqrt{s} - E_{3} - E_{4}) \delta^{3}(\vec{p}_{3} + \vec{p}_{4}) \frac{d^{3}\vec{p}_{3}}{2E_{3}} \frac{d^{3}\vec{p}_{4}}{2E_{4}}$$

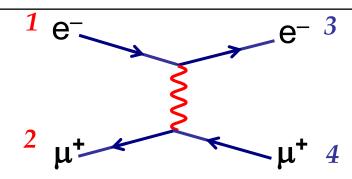
★The integral is exactly the same integral that appeared in the particle decay calculation but with m_a replaced by \sqrt{s}

$$\Rightarrow \quad \sigma = \frac{(2\pi)^{-2}}{4|\vec{p}_i^*|\sqrt{s}} \frac{|\vec{p}_f^*|}{4\sqrt{s}} \int |M_{fi}|^2 d\Omega^*$$

$$\sigma = \frac{1}{64\pi^2 s} \frac{|\vec{p}_f^*|}{|\vec{p}_i^*|} \int |M_{fi}|^2 d\Omega^*$$

ullet In the case of elastic scattering $|ec{p}_i^*| = |ec{p}_f^*|$

$$\sigma_{\mathrm{elastic}} = \frac{1}{64\pi^2 s} \int |M_{fi}|^2 \mathrm{d}\Omega^*$$



• For calculating the total cross-section (which is Lorentz Invariant) the result on the previous page (eq. (4)) is sufficient. However, it is not so useful for calculating the differential cross section in a rest frame other than the C.o.M:

$$d\sigma = \frac{1}{64\pi^2 s} \frac{|\vec{p}_f^*|}{|\vec{p}_i^*|} |M_{fi}|^2 d\Omega^*$$

because the angles in $\,\mathrm{d}\Omega^*=\mathrm{d}(\cos\theta^*)\mathrm{d}\phi^*\,$ refer to the C.o.M frame

- ullet For the last calculation in this section, we need to find a L.I. expression for ${
 m d}\sigma$
- ***** Start by expressing $d\Omega^*$ in terms of Mandelstam t i.e. the square of the four-momentum transfer

$$e^{-}$$
 p_{1}^{μ} p_{3}^{μ} e^{-} $q^{\mu} = p_{1}^{\mu} - p_{3}^{\mu}$

$$t = q^2 = (p_1 - p_3)^2$$
Product of four-vectors therefore L.I.

• Want to express
$$d\Omega^*$$
 in terms of Lorentz Invariant dt where $t\equiv (p_1-p_3)^2=p_1^2+p_3^2-2p_1.p_3=m_1^2+m_3^2-2p_1.p_3$

• In C.o.M. frame:

$$p_{1}^{*\mu} = (E_{1}^{*}, 0, 0, |\vec{p}_{1}^{*}|)$$

$$p_{3}^{*\mu} = (E_{3}^{*}, |\vec{p}_{3}^{*}| \sin \theta^{*}, 0, |\vec{p}_{3}^{*}| \cos \theta^{*})$$

$$p_{1}^{\mu} p_{3\mu} = E_{1}^{*} E_{3}^{*} - |\vec{p}_{1}^{*}| |\vec{p}_{3}^{*}| \cos \theta^{*}$$

$$t = m_{1}^{2} + m_{3}^{3} - 2E_{1}^{*} E_{3}^{*} + 2|\vec{p}_{1}^{*}| |\vec{p}_{3}^{*}| \cos \theta^{*}$$

giving
$$dt = 2|\vec{p}_1^*||\vec{p}_3^*|d(\cos\theta^*)$$

therefore
$$d\Omega^* = d(\cos\theta^*)d\phi^* = \frac{dtd\phi^*}{2|\vec{p}_1^*||\vec{p}_3^*|}$$

hence $d\sigma = \frac{1}{64\pi^2s} \frac{|\vec{p}_3^*|}{|\vec{p}_1^*|} |M_{fi}|^2 d\Omega^* = \frac{1}{2 \cdot 64\pi^2s |\vec{p}_1^*|^2} |M_{fi}|^2 d\phi^* dt$

ullet Finally, integrating over $\,\mathrm{d}\phi^*$ (assuming no $\,\phi^*$ dependence of $|M_{fi}|^2$) gives:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{1}{64\pi s |\vec{p}_i^*|^2} |M_{fi}|^2$$

Dr. A. Mitov

Lorentz Invariant differential cross section

• All quantities in the expression for $\mathrm{d}\sigma/\mathrm{d}t$ are Lorentz Invariant and therefore, it applies to any rest frame. It should be noted that $|\vec{p}_i^*|^2$ is a constant, fixed by energy/momentum conservation

$$|\vec{p}_i^*|^2 = \frac{1}{4s}[s - (m_1 + m_2)^2][s - (m_1 - m_2)^2]$$

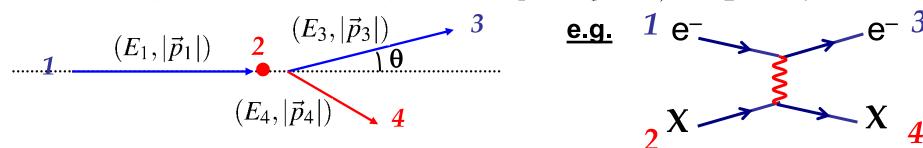
• As an example of how to use the invariant expression ${\rm d}\sigma/{\rm d}t$ we will consider elastic scattering in the laboratory frame in the limit where we can neglect the mass of the incoming particle $E_1\gg m_1$

e.g. electron or neutrino scattering
$$|\vec{p}_i^*|^2 = \frac{(s-m_2)^2}{4s}$$

$$\frac{d\sigma}{dt} = \frac{1}{16\pi(s - m_2^2)^2} |M_{fi}|^2 \qquad (m_1 = 0)$$

2→2 Body Scattering in Lab. Frame

- The other commonly occurring case is scattering from a fixed target in the Laboratory Frame (e.g. electron-proton scattering)
- First take the case of elastic scattering at high energy where the mass of the incoming particles can be neglected: $m_1 = m_3 = 0, \quad m_2 = m_4 = M$



Wish to express the cross section in terms of scattering angle of the e⁻

$$\mathrm{d}\Omega = 2\pi\mathrm{d}(\cos\theta)$$
 therefore
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma}{\mathrm{d}t}\frac{\mathrm{d}t}{\mathrm{d}\Omega} = \frac{1}{2\pi}\frac{\mathrm{d}t}{\mathrm{d}(\cos\theta)}\frac{\mathrm{d}\sigma}{\mathrm{d}t}$$
 Integrating over $\mathrm{d}\phi$

• The rest is some rather tedious algebra.... start from four-momenta

$$p_1 = (E_1, 0, 0, E_1), \ p_2 = (M, 0, 0, 0), \ p_3 = (E_3, E_3 \sin \theta, 0, E_3 \cos \theta), \ p_4 = (E_4, \vec{p}_4)$$

so here $t = (p_1 - p_3)^2 = -2p_1.p_3 = -2E_1E_3(1 - \cos \theta)$

But from (E,p) conservation $p_1 + p_2 = p_3 + p_4$ and, therefore, can also express t in terms of particles 2 and 4

$$t = (p_2 - p_4)^2 = 2M^2 - 2p_2 \cdot p_4 = 2M^2 - 2ME_4$$
$$= 2M^2 - 2M(E_1 + M - E_3) = -2M(E_1 - E_3)$$

Note E_1 is a constant (the energy of the incoming particle) so

$$\frac{\mathrm{d}t}{\mathrm{d}(\cos\theta)} = 2M \frac{\mathrm{d}E_3}{\mathrm{d}(\cos\theta)}$$

ullet Equating the two expressions for t gives

$$E_3 = \frac{E_1 M}{M + E_1 - E_1 \cos \theta}$$

$$\frac{dE_3}{d(\cos\theta)} = \frac{E_1^2 M}{(M + E_1 - E_1 \cos\theta)^2} = E_1^2 M \left(\frac{E_3}{E_1 M}\right)^2 = \frac{E_3^2}{M}$$

$$\frac{d\sigma}{d\Omega} = \frac{1}{2\pi} \frac{dt}{d(\cos\theta)} \frac{d\sigma}{dt} = \frac{1}{2\pi} 2M \frac{E_3^2}{M} \frac{d\sigma}{dt} = \frac{E_3^2}{\pi} \frac{d\sigma}{dt} = \frac{E_3^2}{\pi} \frac{1}{16\pi (s - M^2)^2} |M_{fi}|^2$$

using
$$s = (p_1 + p_2)^2 = M^2 + 2p_1.p_2 = M^2 + 2ME_1$$

gives $(s - M^2) = 2ME_1$

Particle 1 massless $\rightarrow (p_1^2 = 0)$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \left(\frac{E_3}{ME_1}\right)^2 |M_{fi}|^2$$

In limit $m_1 \rightarrow 0$

Dr. A. Mitov

In this equation, E_3 is a function of θ :

$$E_3 = \frac{E_1 M}{M + E_1 - E_1 \cos \theta}$$

giving

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \left(\frac{1}{M + E_1 - E_1 \cos \theta} \right)^2 |M_{fi}|^2 \qquad (m_1 = 0)$$

General form for 2→2 Body Scattering in Lab. Frame

★The calculation of the differential cross section for the case where m_1 can not be neglected is longer and contains no more "physics" (see appendix II). It gives:

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \cdot \frac{1}{m_2|\vec{p}_1|} \cdot \frac{|\vec{p}_3|^2}{|\vec{p}_3|(E_1 + m_2) - E_3|\vec{p}_1|\cos\theta} \cdot |M_{fi}|^2$$

Again there is only one independent variable, θ , which can be seen from conservation of energy

$$E_1+m_2=\sqrt{|\vec{p}_3|^2+m_3^2}+\sqrt{|\vec{p}_1|^2+|\vec{p}_3|^2-2|\vec{p}_1||\vec{p}_3|\cos\theta}+m_4^2$$
 i.e. $|\vec{p}_3|$ is a function of θ
$$\vec{p}_4=\vec{p}_1-\vec{p}_3$$

Summary

★ Used a Lorentz invariant formulation of Fermi's Golden Rule to derive decay rates and cross-sections in terms of the Lorentz **Invariant Matrix Element (wave-functions normalised to 2E/Volume)**

Main Results:

★Particle decay:

$$\Gamma = \frac{|\vec{p}^*|}{32\pi^2 m_i^2} \int |M_{fi}|^2 \mathrm{d}\Omega \qquad \qquad \text{Where} \quad p^* \text{ is a function of particle masses} \\ p^* = \frac{1}{2m_i} \sqrt{\left[(m_i^2 - (m_1 + m_2)^2\right] \left[m_i^2 - (m_1 - m_2)^2\right]}$$

$$p^* = \frac{1}{2m_i} \sqrt{\left[(m_i^2 - (m_1 + m_2)^2) \left[m_i^2 - (m_1 - m_2)^2 \right] \right]}$$

★Scattering cross section in C.o.M. frame:

$$\sigma = \frac{1}{64\pi^2 s} \frac{|\vec{p}_f^*|}{|\vec{p}_i^*|} \int |M_{fi}|^2 d\Omega^*$$

★Invariant differential cross section (valid in all frames):

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{1}{64\pi s |\vec{p}_i^*|^2} |M_{fi}|^2$$

$$\frac{d\sigma}{dt} = \frac{1}{64\pi s |\vec{p}_i^*|^2} |M_{fi}|^2 \qquad |\vec{p}_i^*|^2 = \frac{1}{4s} [s - (m_1 + m_2)^2] [s - (m_1 - m_2)^2]$$

Summary cont.

★ Differential cross section in the lab. frame $(m_1=0)$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \left(\frac{E_3}{ME_1}\right)^2 |M_{fi}|^2 \quad \longleftrightarrow \quad \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \left(\frac{1}{M + E_1 - E_1 \cos \theta}\right)^2 |M_{fi}|^2$$

★ Differential cross section in the lab. frame $(m_1 \neq 0)$

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \cdot \frac{1}{|m_2|\vec{p}_1|} \cdot \frac{|\vec{p}_3|^2}{|\vec{p}_3|(E_1 + m_2) - E_3|\vec{p}_1|\cos\theta} \cdot |M_{fi}|^2$$

with
$$E_1 + m_2 = \sqrt{|\vec{p}_3|^2 + m_3^2} + \sqrt{|\vec{p}_1|^2 + |\vec{p}_3|^2 - 2|\vec{p}_1||\vec{p}_3|\cos\theta + m_4^2}$$

Summary of the summary:

- **★** Have now dealt with kinematics of particle decays and cross sections
- **★The fundamental particle physics is in the matrix element**
- **★**The above equations are the basis for all calculations that follow

Appendix I: Lorentz Invariant Flux

NON-EXAMINABLE

Collinear collision:

$$a \longrightarrow v_a, \vec{p}_a \longrightarrow v_b, \vec{p}_b$$

$$F = 2E_a 2E_b (v_a + v_b) = 4E_a E_b \left(\frac{|\vec{p}_a|}{E_a} + \frac{|\vec{p}_b|}{E_b} \right)$$
$$= 4(|\vec{p}_a|E_b + |\vec{p}_b|E_a)$$

To show this is Lorentz invariant, first consider

Giving
$$p_a \cdot p_b = p_a^{\mu} p_{b\mu} = E_a E_b - \vec{p}_a \cdot \vec{p}_b = E_a E_b + |\vec{p}_a||\vec{p}_b|$$

$$F^2/16 - (p_a^{\mu} p_{b\mu})^2 = (|\vec{p}_a| E_b + |\vec{p}_b| E_a)^2 - (E_a E_b + |\vec{p}_a||\vec{p}_b|)^2$$

$$= |\vec{p}_a|^2 (E_b^2 - |\vec{p}_b|^2) + E_a^2 (|\vec{p}_b|^2 - E_b^2)$$

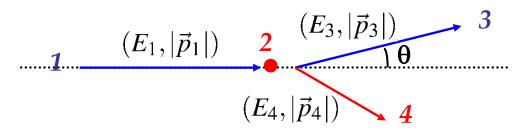
$$= |\vec{p}_a|^2 m_b^2 - E_a^2 m_b^2$$

$$= -m_a^2 m_b^2$$

$$F = 4 \left[(p_a^{\mu} p_{b\mu})^2 - m_a^2 m_b^2 \right]^{1/2}$$

Appendix II : general 2→2 Body Scattering in lab frame

NON-EXAMINABLE



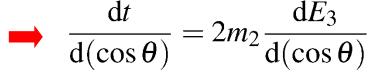
$$p_1 = (E_1, 0, 0, |\vec{p}_1|), p_2 = (M_2, 0, 0, 0), p_3 = (E_3, E_3 \sin \theta, 0, E_3 \cos \theta), p_4 = (E_4, \vec{p}_4)$$

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{dt} \frac{dt}{d\Omega} = \frac{1}{2\pi} \frac{dt}{d(\cos\theta)} \frac{d\sigma}{dt}$$

But now the invariant quantity t:

$$t = (p_2 - p_4)^2 = m_2^2 + m_4^2 - 2p_2 \cdot p_4 = m_2^2 + m_4^2 - 2m_2 E_4$$

= $m_2^2 + m_4^2 - 2m_2(E_1 + m_2 - E_3)$



$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{m_2}{\pi} \frac{\mathrm{d}E_3}{\mathrm{d}(\cos\theta)} \frac{\mathrm{d}\sigma}{\mathrm{d}t}$$

To determine $dE_3/d(\cos\theta)$, first differentiate $|E_3|^2 - |\vec{p}_3|^2 = m_3^2$

$$2E_3 \frac{dE_3}{d(\cos \theta)} = 2|\vec{p}_3| \frac{d|\vec{p}_3|}{d(\cos \theta)}$$

$$t = (p_1 - p_3)^2 = (p_4 - p_2)^2$$
 to give

Then equate

$$m_1^2 + m_3^2 - 2(E_1E_3 - |\vec{p}_1||\vec{p}_3|\cos\theta) = m_4^2 + m_2^2 - 2m_2(E_1 + m_2 - E_3)$$

Differentiate wrt. $\cos\theta$

$$(E_1 + m_2) \frac{\mathrm{d}E_3}{\mathrm{d}\cos\theta} - |\vec{p}_1| \cos\theta \frac{\mathrm{d}|\vec{p}_3|}{\mathrm{d}\cos\theta} = |\vec{p}_1||\vec{p}_3|$$

Using (All.1)
$$\rightarrow \frac{dE_3}{d(\cos\theta)} = \frac{|\vec{p}_1||\vec{p}_3|^2}{|\vec{p}_3|(E_1 + m_2) - E_3|\vec{p}_1|\cos\theta}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{m_2}{\pi} \frac{\mathrm{d}E_3}{\mathrm{d}(\cos\theta)} \frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{m_2}{\pi} \frac{\mathrm{d}E_3}{\mathrm{d}(\cos\theta)} \frac{1}{64\pi s |\vec{p}_i^*|^2} |M_{fi}|^2$$

Dr. A. Mitov

(AII.2)

It is easy to show
$$|\vec{p}_i^*|\sqrt{s}=m_2|\vec{p}_1|$$

$$\frac{d\sigma}{d\Omega} = \frac{dE_3}{d(\cos\theta)} \frac{m_2}{64\pi^2 m_2^2 |\vec{p}_1|^2} |M_{fi}|^2$$

and using (All.2) obtain

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \cdot \frac{1}{m_2|\vec{p}_1|} \cdot \frac{|\vec{p}_3|^2}{|\vec{p}_3|(E_1 + m_2) - E_3|\vec{p}_1|\cos\theta} \cdot |M_{fi}|^2$$