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Recap

* Working towards a proper calculation of decay and scattering processes

Initially concentrate on: .+ w €. e
ce’e" 2 utu Y
€ qQ 7€e(
e_ u_ q q

A In Handout 1 covered the relativistic calculation of particle decay rates
and cross sections IMI2

C o«
flux
A In Handout 2 covered relativistic treatment of spin-half particles

Dirac Equation

X (phase space)

A This handout concentrate on the Lorentz Invariant Matrix Element
* Interaction by particle exchange
* Introduction to Feynman diagrams
* The Feynman rules for QED
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Interaction by Particle Exchange

» Calculate transition rates from Fermi’s Golden Rule
_ 2
Uy = 27| Tyi|"p (Ey)

where Tfi is perturbation expansion for the Transition Matrix Element

. JIVI) UV
Tfi:<f‘v‘l>—|-2< | | >< | |>_|_
iz BTk
*For particle scattering, the first two terms in the perturbation series
can be viewed as:

“scattering !,n Vi j “scattering via an
a potential intermediate state”
i Vi . Vii
1

« “Classical picture” — particles act as sources for fields which give
rise a potential in which other particles scatter — “action at a distance”

* “Quantum Field Theory picture” — forces arise due to the exchange

of virtual particles. No action at a distance + forces between particles
now due to particles
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(start of non-examinable section)

Consider the particle interaction a -+ b — ¢ + d which occurs
via an intermediate state corresponding to the exchange of particle x

*One possible space-time picture of this process is:

C Initial statei: a+ b
Final state f: c+d

Intermediate statej: c +b +x

Q A
U
]
o
75

*This time-ordered diagram corresponds to
a “emitting” x and then b absorbing x

time :
*The corresponding term in the perturbation expansion is:
VIR GIVED
E,—E;
(d|V|x+b){c+x|V]a)
(Eqa+Ep) — (Ec+ Ex+Ep)

. Tci-b refers to the time-ordering where 4 emits X before b absorbs it

T =

ab
Ti
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‘Need an expression for (c+x|V|a) in a c
non-invariant matrix element 7y; &
-Ultimately aiming to obtain Lorentz Invariant ME X

‘Recall T, is related to the invariant matrix element by
Tyi = [ [(2E) "> My,
k
where k runs over all particles in the matrix element

‘Here we have
(c+x|V]a) =

(a—c+x)
(2E,2E.2E,)1/?
M(4—.c+x) is the “Lorentz Invariant” matrix element for a = ¢ + x

* The simplest Lorentz Invariant quantity is a scalar, in this case
8a
c+x\Via) =
ctalVia) (2E,2E.2E,)1/2
£a is a measure of the strength of the interactiona = c + x

Note : the matrix element is only LI in the sense that it is defined in terms of
LI wave-function normalisations and that the form of the coupling is LI

Note : in this “illustrative” example g is not dimensionless.
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Similarly (d|V|x+b) = ob X

(2Eb2Ed2Ex)1/2
Giving 79 _ (d|V]x+b){c+x|V]a) b 8b d
| (Ea+Ep) — (Ec+ Ex+ Ep)
— I 1 8a8b

2E, (2E.2Ey2E2E )2 (E,—E.—Ey)
* The “Lorentz Invariant” matrix element for the entire process is

M® = (2E2E,2E2E,)'/*T8

1 . 8a8b
2E, (Ea —E.— Ex)

Note:

¢ Mjﬁf? refers to the time-ordering where a emits x before b absorbs it

It is not Lorentz invariant, order of events in time depends on frame
+ Momentum is conserved at each interaction vertex but not energy
E; #E;
+ Particle x is “on-mass shell” i.e. E? = p2 + m?
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* But need to consider also the other time ordering for the process
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time
*The Lorentz invariant matrix element for this time ordering is:

b
M}

>

*This time-ordered diagram corresponds to
b “emitting” X and then a absorbing X
* X is the anti-particle of x e.g.

e-

Vi

w

Ve

L

1

8a8b

2Ex (Eb — Ed — Ex)
*In QM need to sum over matrix elements corresponding to same final

state: My = MY+ MY
_ 8a8b . ( 1 4 1 )
2E, \E,—E.—E, E,—E;—E,
8a8b 1 1 Energy conservation:
~ 2E, '<Ea—EC—Ex_Ea—EC+Ex> (E,+Ep, =E.+Ey)
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8a8b 2E,

2F, (E, —EC)2 —E%
8a8b

(£ 2

*Which gives My =

— — -

*From 1sttime ordering E? = 52 +m? = (P, — p.)> +m?>

o\ 8a8b
giving My = E—
/i (Ea - Ec)2 — (pa — pc>2 - m)zc
- 8a8b
— P
(Pa—pe)* = m; (end of non-examinable section)
8a8b

- |(Mj =

q- — my

* After summing over all possible time orderings, M/; is (as anticipated)
Lorentz invariant. This is a remarkable result — the sum over all time
orderings gives a frame independent matrix element.

*Exactly the same result would have been obtained by considering the
annihilation process
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Feynman Diagrams

* The sum over all possible time-orderings is represented by a
FEYNMAN diagram

v 4 4
| a c s| a ¢ a C
& &
X = —_
+ % — .
b d b 4, b d
time time
a C In a Feynman diagram:
N~
% the LHS represents the initial state
X % the RHS is the final state

% everything in between is “how the interaction
b ~d happened”

* It is important to remember that energy and momentum are conserved
at each interaction vertex in the diagram.

® The factor 1/ (q2 — m)%) is the propagator; it arises naturally from

the above discussion of interaction by particle exchange
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* The matrix element: Mf,- = fagb > depends on:

q- — mx
& The fundamental strength of the interaction at the two vertices £a, 8»

& The four-momentum, ¢ , carried by the (virtual) particle which is
determined from energy/momentum conservation at the vertices.
Note q2 can be either positive or negative.

a_ D . P3 - Here q2:(p1 —p3)%(p4 —p2)2: t “t-channel”
X For elastic scattering: p1 = (E,ﬁl); P3 = (Eaﬁ3)
P2 | ps q* = (E—E)*— (p1 — P3)*
b &b d
g <0 termed “space-like”
» e Here ¢*=(p1 -I-p2)2:(p3 —|—p4)2=s “s-channel”
o>X /%, InCoM: p1=(E,p); p»=(E,—p)
P ps g>=(E+E)*—(p—p)* =4E
qg* >0 termed “time-like”
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Virtual Particles

“Time-ordered QM” Feynman diagram
o o
? x ® 7 i 8a8b
bXd T bzd B I Mfi:qz_mz
— — b d X
time time
N— 7 N— 7
—— —
‘Momentum conserved at vertices ‘Momentum AND energy conserved
‘Energy not conserved at vertices at interaction vertices
‘Exchanged particle “on mass shell” | °Exchanged particle “off mass shell”
2 =2 _ 2 2
E%—|ﬁx\2:m)2€ Ex_|px| =4 #mx

VIRTUAL PARTICLE

-Can think of observable “on mass shell” particles as propagating waves
and unobservable virtual particles as normal modes between the source

particles: —
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Aside: V(r) from Particle Exchange

* Can view the scattering of an electron by a proton at rest in two ways:

Interaction by particle exchange in 2"9 order perturbation theory.
a c

8a8b
Myi= ——
b d q- — my
*Could also evaluate the same process in first order perturbation
theory treating proton as a fixed source of a field which gives

ise t tential V
rise to a potential V(r) y M — (ll/f|V(l’)|l//i>
i » / Obtain same expression for My; using
*p e YUKAWA
Vi(r) V(r) = 8a8s - potential

* In this way can relate potential and forces to the particle exchange picture

* However, scattering from a fixed potential V(r) is not a relativistic
invariant view
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Quantum Electrodynamics (QED)

*Now consider the interaction of an electron and tau lepton by the exchange
of a photon. Although the general ideas we applied previously still hold,
we now have to account for the spin of the electron/tau-lepton and also
the spin (polarization) of the virtual photon.

(Non-examinable)
*The basic interaction between a photon and a charged particle can be
introduced by making the minimal substitution (part Il electrodynamics)

p—P—qA; E—E—q¢
In QM: p=-iV; E=id/ot
Therefore make substitution:  id, — id, —gA,
Where Ay =(9,—A); 9y =(9/91,4+V)
*The Dirac equation:
Yoy +imy =0 = Yo, y+igytAyy+imy =0

(here ¢ = charge)

. 0 L=
(xi) = iyoa—‘i’ﬂy.vw—qymuw—mw:o
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.00 R o
z}pa—zfzyon = my—ip.Vy+qytALy

Xy Ay = (Pm—-i’TV)v+qP v Auy
N\ ~ ) LN v )
Combined rest Potential
mass + K.E. energy

‘We can identify the potential energy of a charged spin-half particle
in an electromagnetic field as:

(note the A, term is

Vo = gy’ vHA, just: q"YAo = g9)

*The final complication is that we have to account for the photon
polarization states.

Ay = eff) oi(PF—El)

e.g. for a real photon propagating in the z direction we have two
orthogonal transverse polarization states

(1) 8 Could equally have
el) — 0 e = 1 chosen circularly
0 0 polarized states
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*Previously with the example of a simple spin-less interaction we had:

I
— <WC|V|Wa>q2 _m]2c <Vfd‘v|‘lfb>\ ‘ X

]! 1l
8a v b T d
*In QED we could again go through the procedure
of summing the time-orderings using Dirac
spinors and the expression for Vp. If we were

to do this, remembering to sum over all photon
polarizations, we would obtain: ) A)

M = [ul(p3)qe Y v ue(p1 ]Z il (1 (pa) g7 uc(p2)]

G U — _
Y Y~ Y

Interaction of e~ | [ Massless photon propagator | ||nteraction of 7~
with photon summing over polarizations with photon

All the physics of QED is in the above expression !
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*The sum over the polarizations of the VIRTUAL photon has to include
longitudinal and scalar contributions, i.e. 4 polarisation states

1 0 0 0
©_ [0 n_ |1 @ (0 3 (9
e =1 el =1, e =[] > 0
0 0 0 1
g . AoV, This is not obvious - for the
and gives: ; 8“ (8" ) — 8wy moment just take it on trust
and the invariant matrix element becomes: (end of non-examinable

—8 section)
M = (g (p3)ge "V e(p1)] — 7= [z (pa)as? 1 e (p2)
-Using the definition of the adjoint spinor ¥ = y'}’

M = [t.(p3)qe ¥ ue(p1)]

* This is a remarkably simple expression ! It is shown in Appendix V
of Handout 2 that % Y"uy transforms as a four vector. Writing

J=u.(p3) P uc(pr)  Jr =uc(pa)y ue(p2)
M = _QeQT% showing that M is Lorentz Invariant

j;”’ 72 (pa) gz 1z (p2)]
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Feynman Rules for QED

It should be remembered that the expression

M = [ (p3)ge ¥ e (p1)] j;“’ e (p4)qey uz(p2)]

hides a lot of complexity. We have summed over all possible time-
orderings and summed over all polarization states of the virtual

photon. If we are then presented with a new Feynman diagram
we don’t want to go through the full calculation again.

Fortunately this isn’t necessary — can just write down matrix element
using a set of simple rules

Basic Feynman Rules:

~ wt ® Propagator factor for each internal line
Y (i.e. each internal virtual particle)
® Dirac Spinor for each external line
e- T (i.e. each real incoming or outgoing particle)

&® Vertex factor for each vertex
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Basic Rules for QED

@ External Lines
r

incoming particle u(p) —>

spin 1/2 outgoing particle u(p) —>
incoming antiparticle v(p) —<—e

_ outgoing antiparticle v(p) ——

_ " incoming photon et (p) NN
spin1 < : U «

_ outgoing photon € (p) NN\
@ Internal Lines (propagators)

. v v
spin 1 photon q2 NN\
spin 1/2  fermion i(Yqu +m) —> o

g% — m?

@ Vertex Factors
spin 1/2  fermion (charge -|¢|) iey" Y

® Matrix Element — ;)] = product of all factors
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P1 P3 _

€.9. - P! I p3 o e‘\)\;;/,/e— it (p3)|iey"|ue(p1)

T | 7 ur(pa)liey’uc(p2)
M = [0 )P ()|~ ) iey (2]

*Which is the same expression as we obtained previously
egq. et 2 p

_iM = [P(pa)ier u(py) ‘;‘i“v 7(p3)iey"v(ps)

P

e 1 p3- N

Note: + At each vertex the adjoint spinor is written first
¢+ Each vertex has a different index
+* The guv of the propagator connects the indices at the vertices
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Summary

* Interaction by particle exchange naturally gives rise to Lorentz Invariant
Matrix Element of the form

Mfi _ 8a8b

2 2
q- — my

* Derived the basic interaction in QED taking into account the spins
of the fermions and polarization of the virtual photons:

—iguv

—iM = [@(p3)iey*u(p:)] q{L i(p4)iey’ u(p)]

* We now have all the elements to perform proper calculations in QED !
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