Particle Physics

Dr. Alexander Mitov

Handout 4 : Electron-Positron
Annihilation
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QED Calculations

@ How to calculate a cross section using QED (e.g. e'e™— pu'u):
© Draw all possible Feynman Diagrams

‘For e*e~ = p*u there is just one lowest order diagram
et p

2
M o< e“ o< Oy,

e- Bn
+ many second order diagrams + ...

e* Y wooet W
e- e T
® For each diagram calculate the matrix element using Feynman rules

derived in the previous handout.
©® Sum the individual matrix elements (i.e. sum the amplitudes)

Mfi =M +M>,+Msz+....

*Note: summing amplitudes therefore different diagrams for the same final
state can interfere either positively or negatively!
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and then square \Mfilz = (M) +My+M3+....)(M{ +M; + M5 +....)
=) this gives the full perturbation expansion in 0,

« For QED o, ~ 1/137 the lowest order diagram dominates and
for most purposes it is sufficient to neglect higher order diagrams.

et p et Y pr
J4 2 2 2 4
M= < o, M= < o
e- n e K
@ Calculate decay rate/cross section using formulae from handout 1.

e.g. for a decay p* )
I = M ¢;|~d€
327m%2m? /' sl

*For scattering in the centre-of-mass frame
do 1 |ﬁ}i|‘M P
do* — e4m2s |pr| (1)

*For scattering in lab. frame (neglecting mass of scattered particle)

do 1 Es 2’M.’2
dQ ~ 6472 \ ME, Ji
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Electron Positron Annihilation

* Consider the process: e*e™ = uu- p3 AN
*Work in C.o.M. frame (this is appropriate . 9/\)'
for most e*e~ colliders). e x e’
P2
plz(anaOap) pz:(Ea()?Oa_p) +%
p3:(E7ﬁf) p4:(E7_ﬁf) H

*Only consider the lowest order Feynman diagram:
¢+ Feynman rules give:

—iM = [v(py)iey u(p1)]

_ NOTE: °‘Incoming anti-particle Vv
e/ "p1 P3° \U sIncoming particle u
*Adjoint spinor written first

D2 ps, MW —lgu

[u(p3)iey"v(pa)]

LMp? with s =(p1+p2)* = (E+E)* =4E7
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Electron and Muon Currents

*Here 6]2 = (Pl —I—p2)2 = S and matrix element

—iM = [3(pa)iey*u(py)] ‘f;‘" @(p3)iey v(pa)]

62

= M= ——guy [V(p2) Y ulpy)][a(p3) v v(pa)]

* In handout 2 introduced the four-vector current
JF=vrty

which has same form as the two terms in [ ] in the matrix element

* The matrix element can be written in terms of the electron and muon currents
(Je)" =v(p2)Y'u(p1) and  (ju)" =u(p3)y ' v(ps)
2
€ : .
= M= _FSMV(Je)“(Ju)V

62

M= == jeju

* Matrix element is a four-vector scalar product — confirming it is Lorentz Invariant
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Spin in e*e~ Annihilation

* In general the electron and positron will not be polarized, i.e. there will be equal
numbers of positive and negative helicity states
* There are four possible combinations of spins in the initial state !

e, 2 et 22, T et e, 2 et =&, E et
RL RR LL LR

 Similarly there are four possible helicity combinations in the final state
* In total there are 16 combinations e.g. RL—-RR, RL—RL, ....

» To account for these states we need to sum over all 16 possible helicity
combinations and then average over the number of initial helicity states:

1 1
(IM|*) = 1 Z IM;|* = 1 (\MLL_>LL\2+ My 1r|* + ..)
spins
* i.e. need to evaluate: e? o
— _?]e-]u

for all 16 helicity combinations !

* Fortunately, in the limit £ > m,, only 4 helicity combinations give non-zero
matrix elements — we will see that this is an important feature of QED/QCD
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9

p3 = (E,Esin0,0,E cos6); /
P4

eIn the C.0.M. frame in the limit E > m yu_
p1=(E,0,O,E)‘ p2:(E70707_E> e P > < 9\)19 et
2

ps = (E,-Esin6,0,—E cos 0) T
Left- and right-handed helicity spinors (handout 2) for particles/anti-particles are:
c —s 7| 7]
e'¥s e lﬁms ﬁmc
=N | . u =N 1l vi =N —Efime"pc v =N Eﬁme"bs
Q—I—m' E+m ' — C
£rne?s ~phmele e s
where S:sin%; c:cosg and N =+E+m
°In the limit E >> m these become:
c —S S C
i¢ i9 _cel? i9
i =VE [ ) =vE[ <" | v =VE[ 7 v =vE [
se'? —ce'? ce'? se'?

*The initial-state electron can either be in a left- or right-handed helicity state

1 0
0 1

ur(p)=VvE |7 |su(p)=vE| ¢ |:
0 1
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For the initial state positron (9 = 77:) can have either:
1

0

0 1

vi(p2) =VE | ] |svi(p2) =VE |
0 1

-Similarly for the final state L™ which has polar angle 0 and choosing ¢ =0

c —S ¢/:O('u_
up(ps) =VE | ¢ |5 u(ps) =VE | § | e
) —c H i
-And for the final state u* replacing 0 — T —0; ¢ — T  obtain
c s using sin(%Z5%) = cos ¢
vi(pa) =VE | Z¢ |3 vipa) =VE | 5 | cos (¥3%) = sin 5
s c E T 1
‘Wish to calculate the matrix element M = — ?]efﬂ

* first consider the muon current ju for 4 possible helicity combinations

RR y K RL % K LR y K LL /’ K
wZ Wz W wZ

Dr. A. Mitov Particle Physics 128



The Muon Current

‘Want to evaluate (ju)v = ﬁ(p3)}/vv(p4) for all four helicity combinations

*For arbitrary spinors ¥/, ¢ with it is straightforward to show that the
components of W}/“(p are

‘Consider the Up U,

7Yy =
vY'¢
Yre =
Yre =

_I_

WYY 0 = Wi+ v5 02+ Wi 03+ v 0 (3)
VY =i+ s+ v+ vi o (4)
PV = —i(yids— w303+ vid— vion) (5)
VY0 =wios — s+ vior — i (6)

combination using Y = u; ¢ = V]

S C
with v, =VE (SC) s up =VE (ﬁ) ;
—C S

w1 (p3)Yvi(ps) = E(cs—sc+es—sc)=0
- w1 (p3)Y'vi(ps) = E(—c*+s*—c*+s%) =2E(s*—c*) = —2Ecos8
i (p) Py (p) = —iE(—¢ =5 = —5) = 2iE
w1 (p3)Yvi(ps) = E(cs+sc+ces+sc)=4Esc=2Esin6
Dr. A. Mitov Particle Physics 129




*Hence the four-vector muon current for the RL combination is
Uy (pg)}/"vl(m) = ZE(O, —cos 8,i,sin 9)

*The results for the 4 helicity combinations (obtained in the same manner) are:

MJ'«}yui ﬁT(p3)7’VVL(P4) = 2E(0,—cos6,i,sinb) RL
W =+ ur(p3)y'vi(psa) = (0,0,0,0) RR
T =K G (p3)y'vi(ps) = (0,0,0,0) LL
o == [ (p)Y vi(ps) = 2E(0,—cosB,—isin6)] LR

* IN THE LIMIT £E > m only two helicity combinations are non-zero !

* This is an important feature of QED. It applies equally to QCD.

* In the Weak interaction only one helicity combination contributes.

* The origin of this will be discussed in the last part of this lecture

- But as a consequence of the 16 possible helicity combinations only
four given non-zero matrix elements
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Electron Positron Annihilation cont.

* For €@~ = W'~ now only have to consider the 4 matrix elements:

7)
- .

Mgp e > < e e- > < et |[Mpg;
y T4
u+‘/ u*‘/
o H
Mz o= 4% e’ e = ,_ e’ M,
u+/ u*‘/

‘Previously we derived the muon currents for the allowed helicities:

m}y“_ gy o i (p3)y'vi(pa) = 2E(0,—cos6,i,sin8)
v e =W (g o @ (ps)Y'vi(pa) = 2E(0,—cos6,—isin6)

*Now need to consider the electron current
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The Electron Current

*The incoming electron and positron spinors (L and R helicities) are:

1 0 1 0
el ell) o)
0 —1 0 1

*The electron current can either be obtained from equations (3)-(6) as before or
it can be obtained directly from the expressions for the muon current.

(Je)* =v(p2) v u(p1) (Ju)* =u(p3)v*v(ps)
*Taking the Hermitian conjugate of the muon current gives

a(p3) P v(p)]” = [u(ps) ¥ v(ps)]

= v(pa) ¥ u(ps) (AB)' = B'A"
= v(pa) Y Y u(p3) Y=
= v(pa) YV u(ps) Y0 = Oyt
= V(pa)y"u(ps)

Dr. A. Mitov Particle Physics 132



*Taking the complex conjugate of the muon currents for the two non-zero
helicity configurations:

V| (pa)y ur(p3)
Vi (pa) Y u(p3)

@ (p3)Y'vi(ps)]” =2E(0,—cos 6, —i,sin6)
@ (p3)Yvi(pa)]” =2E(0,—cos8,i,sin6)

To obtain the electron currents we simply need to set 8 = ()

e =, =€ legel + V(p2)Yur(p) = 2E(0,—1,-i,0)
e—— «—¢* e; ey vi(p2)y'u(p1) = 2E(0,—1,i,0)
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Matrix Element Calculation

2
€
‘We can now calculate M = —— j,. j,, for the four possible helicity combinations.
\)
e.qg. the matrix element for €§€Zr — u,;uf which will denote | Mg
2"
/ Here the first subscript refers to the helicity
e "™ = of the €™ and the second to the helicity of the p".
1 Don’t need to specify other helicities due to
“helicity conservation”, only certain chiral
Tha combinations are non-zero.
. -+ . - :
*xUsing: epe; : (G )* =9 (p2)Y*uy(p1) = 2E(0,—1,—i,0)
- _|_ . - vV L . .
[T T (ju)" =u;(p3)Y'vi(pa) = 2E(0,—cos0,i,sinb)
2
i € . ..
gives Mpr = — " 2E(0,—1,—i,0)].]2E(0, —cos 0,i,sin0)]
=  ¢*(14cos0)
—  47ma(l+cos0) where o= e’ /4w~ 1/137
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Similarly (Mgr|* = |M11|* = (4na)* (1 4+ cos 6)?
‘MRL‘z = ’MLR‘z — (471'06)2(1 — COS 9)2

Mpgr w || Mgr

e /-:

-1

e?(1+cosB)? | e*(1—cos@)? | e*(1—cosB)? | e*(1+cosh)?

Assuming that the incoming electrons and positrons are unpolarized, all 4
possible initial helicity states are equally likely.
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Differential Cross Section

*The cross section is obtained by averaging over the initial spin states

a(rlld summilng ovler the final spin states: Mge|? + |MLR|2A Mg + | My
o : :
q - 15 647’52S<|MRR|2+ Mg |” + [Mir|” + M)
(4mor)?
STTTR (2(14-cos0)* 42(1 —cos 0)?)
do o’
=) | = (l1+cos’6
dQ 4s ( ) : 1
Example: Mark Il Expt., M.E.Levi et al., -1 cos® +1
ete- — Tl —~ 60 -PhysRevletts1(1983)1941
Y 3

—— QED plus Z
contribution

Angular distribution becomes
slightly asymmetric in higher
order QED or when Z
contribution is included

cos 6

Dr. A. Mitov Particle Physics 136



- The total cross section is obtained by integrating over 8, ¢ using

+1 16
/(1+c0529)d£2:27r/ (14 cos®0)dcos O = Tn
—1

giving the QED total cross-section for the process €'€~ = LU~

2
4o
O =
:3:; 10 2 T T T LI S L L B B L B

-—_- ete” —ptyu” 3
i N v Jade ]
* Lowest order cross section i o Mark )

calculation provides a good A Pluto
description of the data ! = “E- o Tesso E
= L ]
N—r - -
© i

Oaep =

This is an impressive result. From
first principles we have arrived at an
expression for the electron-positron
annihilation cross section which is
good to 1%

0.1

f lllll‘
[ It III!I

0_01i|1[|||llillllllill
20 30

s(GeV)

(=]
—
o
F-3
o
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Spin Considerations (E > m)

* The angular dependence of the QED electron-positron matrix elements can
be understood in terms of angular momentum

* Because of the allowed helicity states, the electron and positron interact
in a spin state with S, = 1-1, i.e. in a total spin 1 state aligned along the

zaxis: [1,+1) or|1,—1)
 Similarly the muon and anti-muon are produced in a total spin 1 state aligned
along an axis with polar angle 0
’17 1>9

e.g. MRR /u
e -
f/ T e = 1,1)
wt
 Hence MRR o< (W|1,1) where V¥ corresponds to the spin state, |1,1)g, of
the muon pair.

- To evaluate this need to express |1, 1) in terms of eigenstates of 3;

* In the appendix (and also in IB QM) it is shown that:
11,1)g = 3(1 —cos 0)[1,—1) sin0]1,0) + 5 (1+cos 0)[1,+1)

s
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-Using the wave-function for a spin 1 state along an axis at angle 0

y=]1,1)g = 5(1 —cos)[1,—1) sin0]1,0) + 5 (1+cos 0)[1,+1)

t

can immediately understand the angular dependence

MRR /l‘l’_ |171>9
e—}/u -e+ = 1,1) =p
Thi

IMrr|? o< [(W|1,+1)* = 7 (1 +cosH)?
MLR /l’l— ‘131>9
e_‘;/u _e+ == 1, —1) =

MR |? o< [(y]1,—1)|* = 7(1 — cos 0)?
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Lorentz Invariant form of Matrix Element

‘Before concluding this discussion, note that the spin-averaged Matrix Element
derived above is written in terms of the muon angle in the C.o0.M. frame.

1 —
(M) = ZX(|MRR|2+\MRL\2+|MLR|2+|MfL\) p /,93<,”
1 0
1 e- > <« et
= —e*(2(14c0s0)*+2(1 —cosH)?) / P2
4 + P4
= ¢*(1+cos”0) H

*The matrix element is Lorentz Invariant (scalar product of 4-vector currents)
and it is desirable to write it in a frame-independent form, i.e. express in terms
of Lorentz Invariant 4-vector scalar products

‘Inthe CoM. p;=(E,0,0,E) pr,=(E,0,0,—F)
p3=(E,Esin8,0,Ecos0) ps=(E,—Esin6,0,—Ecos0)
giving: P1.p2 = 2E%; p1.p3 :E2(1 —cos0); pi1.p4 :E2(1 +cos0)

*Hence we can write

Myi|?) = 2¢* =
<| fl‘ > (pl.p2)2 S2
*Valid in any frame !

(p1-p3)* + (p1-pa)? 5 8 (12+u2)
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CHIRALITY

*The helicity eigenstates for a particle/anti-particle for E >> m are:

”T:\/E Sec ;”l:\/E Ci ;VTZ\/E fi ;vl=\/f Sec
se'? —ce'? ce'? seid

where s = sing; c= cos%

*Define the matrix

In the limit £ > m the helicity states are also eigenstates of }’5

Y =tup Pup=—u; Py =—vi; Py =+
* In general, define the eigenstates of ’}/5 as LEFT and RIGHT HANDED CHIRAL
states ur, ur, VR, VL
I.e. ’}/SMR = +UR; ’}/SML = —Uj, ’}/sz = —VR, '}’SVL = +vr,

°In the LIMIT E > m (and ONLY IN THIS LIMIT):
UR =Up; UL =U|;, VR=Vy; VL=V
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* This is a subtle but important point: in general the HELICITY and CHIRAL
eigenstates are not the same. It is only in the ultra-relativistic limit that the
chiral eigenstates correspond to the helicity eigenstates.

* Chirality is an import concept in the structure of QED, and any interaction of the
form ﬁy"u
* In general, the eigenstates of the chirality operator are:
Yugr = +ug; Yur=—ur; Y'vg=—Vvr; Yvi=+vL

‘Define the projection operators:

Pe=3(1+7) P=301-7)

*The projection operators, project out the chiral eigenstates

Prugp =ug; Prup =0; Prur=0; PLu; =uy

Prvr=0; Prvp=vr; Pivg=vg; Povp=0

‘Note P» projects out right-handed particle states and left-handed anti-particle states

‘We can then write any spinor in terms of it left and right-handed
chiral components:

y=yr+y=31+P)y+3(1-7)y
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Chirality in QED

*In QED the basic interaction between a fermion and photon is:
ieyyhe
«Can decompose the spinors in terms of Left and Right-handed chiral components:
ieyy o = ie(W,+Vg)7" (dr+9L)
= ie(YrY" O+ VRV OL+ VY O+ Y L)

‘Using the properties of }’5 (Q8 on examples sheet)
2 1. _ . _
rr=5L r=r; ré=-ryr
it is straightforward to show (Q9 on examples sheet)

YeY'oL=0; VY yor=0
* Hence only certain combinations of chiral eigenstates contribute to the
interaction. This statement is ALWAYS true.

‘For E > m, the chiral and helicity eigenstates are equivalent. This implies that
for E > m only certain helicity combinations contribute to the QED vertex !
This is why previously we found that for two of the four helicity combinations
for the muon current were zero
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Allowed QED Helicity Combinations

¢+ In the ultra-relativistic limit the helicity eigenstates = chiral eigenstates
¢ In this limit, the only non-zero helicity combinations in QED are:

Scattering: “Helicity conservation”

N 2 S &2 N -~ N &£
R R L & L

Annihilation:

L
N\ N\
/7 z 7
R

Dr. A. Mitov Particle Physics 144



Summary

* In the centre-of-mass frame the e*e~ = pu*u- differential cross-section is

do
dQ

2
(04
= 4—S(1 +cos” )

NOTE: neglected masses of the muons, i.e. assumed E > my,

* In QED only certain combinations of LEFT- and RIGHT-HANDED CHIRAL
states give non-zero matrix elements

* CHIRAL states defined by chiral projection operators

Pr=5(1+7); P=35(1-7)

* In limit £ >> m the chiral eigenstates correspond to the HELICITY eigenstates
and only certain HELICITY combinations give non-zero matrix elements

RR - T RL P T LR ’ u LL P T
e = L= o €. -; ></-:e+ e & H/‘-‘eJr €. : M/‘-‘eJr
w/ u+/ w/ u+/

Dr. A. Mitov
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Appendix : Spin 1 Rotation Matrices

-Consider the spin-1 state with spin +1 along the
axis defined by unit vector
L, : 0
n=(sin6,0,cos0) > Z

-Spin state is an eigenstate of 7.5 with eigenvalue +1

(78.5) | y) = +1]y) (A1)

*Express in terms of linear combination of spin 1 states which are eigenstates

of 3,

lv) =oall,1)+B[1,0) +7]1,-1)
with oF+ B2 +y =1
* (A1) becomes

(sin@S, +cos 6S,)(ax|1,1) + B]1,0) +¥|1,—1)) = e¢|1,1) + B|1,0) + 7|1, —1)
(A2)

‘Write S in terms of ladder operators S, = %(SJr +S_)
where S,.|1,1)=0 S,[1,0) =+2|1,1) S.|1,—1) =+/2[1,0)
S L) =vA1L0) S [1,00=v21,—1) S_[1,-1)=0
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from which we find Sel1,1) = \%|170>
$:|1,0) = S5 (I1,1) +[1,-1))
Sx|17_1>:\/L§’ >
* (A2) becomes
sind |- 11.00+ P -+ P+ Loy | +
V2 V2 V2 V2
acosB|1,1) —ycosB|1,—1) = a|1,1) + B]1,0) +v|1,—1)
- which gives ﬁsil/1§9+acosj_a )
Sin
e+ —z =k ¢
ﬁsinfze—y0059=}/ )

-using o+ [52 ~+ }/2 = 1 the above equations yield
\%(1—|—cos9) ﬁ:%sine y:\%(l—cose)

* hence

v=5(1-cosB)|1,— sin0]1,0) + 5 (1 +cos0)[1,+1)

1)+

DI —
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-The coefficients «, 3,7 are examples of what are known as quantum
mechanical rotation matrices. The express how angular momentum eigenstate
in a particular direction is expressed in terms of the eigenstates defined in a
different direction

*For spin-1 (j = 1) we have just shown that
df 1(0) = 3(1+cos8) dy,(8)= —5sin@ d'| (6)=5(1—cosB)

v, 1
1 (0) =cos = d*, (0)=sin_

d
2 257D

)

D= PO —
(\®
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