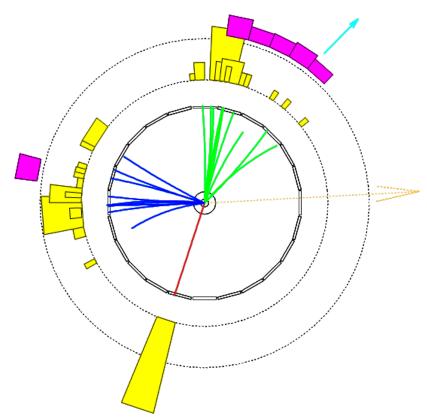
Particle Physics

Dr. Alexander Mitov



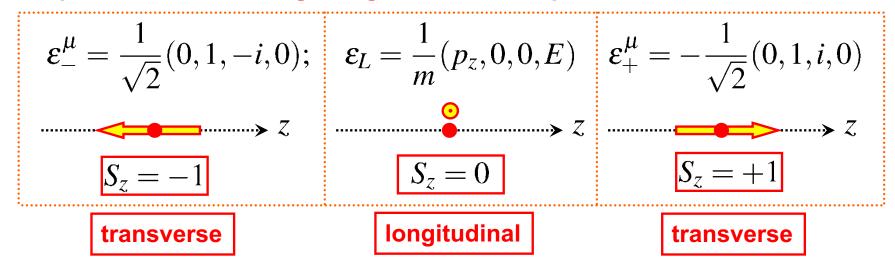
Handout 13: Electroweak Unification and the W and Z Bosons

Boson Polarization States

- ★ In this handout we are going to consider the decays of W and Z bosons, for this we will need to consider the polarization. Here simply quote results although the justification is given in Appendices I and II
- ★ A real (i.e. not virtual) <u>massless</u> spin-1 boson can exist in two transverse polarization states, a <u>massive</u> spin-1 boson also can be longitudinally polarized
- \star Boson wave-functions are written in terms of the polarization four-vector $arepsilon^{\mu}$

$$B^{\mu} = \varepsilon^{\mu} e^{-ip.x} = \varepsilon^{\mu} e^{i(\vec{p}.\vec{x} - Et)}$$

★ For a spin-1 boson travelling along the z-axis, the polarization four vectors are:



Longitudinal polarization isn't present for on-shell massless particles, the photon can exist in two helicity states $h=\pm 1$ (LH and RH circularly polarized light)

W-Boson Decay

- **★**To calculate the W-Boson decay rate first consider $W^- \rightarrow e^- \overline{V}_{\rho}$
- ★ Want matrix element for :



Incoming W-boson :
$$arepsilon_{\mu}(p_1)$$

Vertex factor
$$:-i\frac{g_W}{\sqrt{2}}\frac{1}{2}\gamma^{\mu}(1-\gamma^5)$$

$$-iM_{fi} = \varepsilon_{\mu}(p_1).\overline{u}(p_3).-i\frac{g_W}{\sqrt{2}}\gamma^{\mu}\frac{1}{2}(1-\gamma^5).v(p_4)$$

Note, no propagator

$$\Rightarrow$$

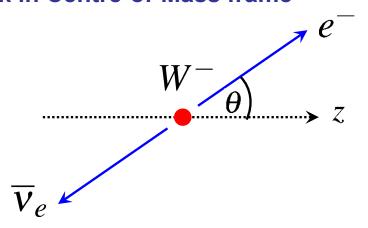
★ This can be written in terms of the four-vector scalar product of the W-boson polarization $arepsilon_{\mu}(p_1)$ and the weak charged current j^{μ}

$$M_{fi} = \frac{g_W}{\sqrt{2}} \varepsilon_{\mu}(p_1).j^{\mu}$$

$$M_{fi}=rac{g_W}{\sqrt{2}}oldsymbol{arepsilon}_{\mu}(p_1).j^{\mu}$$
 with $j^{\mu}=\overline{u}(p_3)\gamma^{\mu}rac{1}{2}(1-\gamma^5)v(p_4)$

W-Decay: The Lepton Current

- ***** First consider the lepton current $j^{\mu} = \overline{u}(p_3) \gamma^{\mu} \frac{1}{2} (1 \gamma^5) v(p_4)$
- ★ Work in Centre-of-Mass frame



$$e^{-} \qquad p_{1} = (m_{W}, 0, 0, 0);$$

$$p_{3} = (E, E \sin \theta, 0, E \cos \theta)$$

$$p_{4} = (E, -E \sin \theta, 0, -E \cos \theta)$$
with $E = \frac{m_{W}}{2}$

★ In the ultra-relativistic limit only <u>LH particles</u> and <u>RH anti-particles</u> participate in the weak interaction so

$$j^{\mu} = \overline{u}(p_3)\gamma^{\mu} \frac{1}{2}(1-\gamma^5)v(p_4) = \overline{u}_{\downarrow}(p_3)\gamma^{\mu}v_{\uparrow}(p_4)$$

Chiral projection operator, e.g. see p.131 or p.294

Note:
$$\frac{1}{2}(1-\gamma^5)v(p_4)=v_\uparrow(p_4)$$
 $\overline{u}(p_3)\gamma^\mu v_\uparrow(p_4)=\overline{u}_\downarrow(p_3)\gamma^\mu v_\uparrow(p_4)$

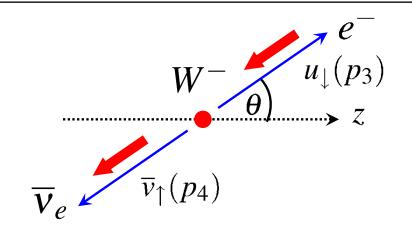
"Helicity conservation", e.g. see p.133 or p.295

We have already calculated the current

$$j^\mu=\overline{u}_\downarrow(p_3)\gamma^\mu v_\uparrow(p_4)$$
 when considering $e^+e^- o\mu^+\mu^-$

•From page 128 we have for $\mu_L^- \mu_R^+$

$$j^{\mu}_{\uparrow\downarrow} = 2E(0, -\cos\theta, -i, \sin\theta)$$



467

 For the charged current weak Interaction we only have to consider this single combination of helicities

$$j^{\mu} = \overline{u}(p_3)\gamma^{\mu} \frac{1}{2}(1-\gamma^5)v(p_4) = \overline{u}_{\downarrow}(p_3)\gamma^{\mu}v_{\uparrow}(p_4) = 2E(0,-\cos\theta,-i,\sin\theta)$$

and the three possible W-Boson polarization states:

$$\varepsilon_{-}^{\mu} = \frac{1}{\sqrt{2}}(0, 1, -i, 0); \quad \varepsilon_{L} = \frac{1}{m}(p_{z}, 0, 0, E) \quad \varepsilon_{+}^{\mu} = -\frac{1}{\sqrt{2}}(0, 1, i, 0)$$

$$W^{-} \qquad W^{-} \qquad W^{-} \qquad Z$$

$$S_{z} = -1$$

$$S_{z} = 0$$

Dr. A. Mitov Particle Physics

★ For a W-boson at rest these become:

$$arepsilon_{-}^{\mu} = rac{1}{\sqrt{2}}(0,1,-i,0); \quad arepsilon_{L} = (0,0,0,1) \quad arepsilon_{+}^{\mu} = -rac{1}{\sqrt{2}}(0,1,i,0)$$

★ Can now calculate the matrix element for the different polarization states

$$M_{fi} = \frac{g_W}{\sqrt{2}} \varepsilon_{\mu}(p_1) j^{\mu}$$
 with $j^{\mu} = 2 \frac{m_W}{2} (0, -\cos\theta, -i, \sin\theta)$

Decay at rest : $E_e = E_v = m_W/2$

★ giving

$$\mathcal{E}_{-} M_{-} = \frac{g_{W}}{\sqrt{2}} \frac{1}{\sqrt{2}} (0, 1, -i, 0) . m_{W}(0, -\cos\theta, -i, \sin\theta) = \frac{1}{2} g_{W} m_{W}(1 + \cos\theta)$$

$$\mathcal{E}_L$$
 $M_L = \frac{g_W}{\sqrt{2}}(0,0,0,1).m_W(0,-\cos\theta,-i,\sin\theta) = -\frac{1}{\sqrt{2}}g_W m_W \sin\theta$

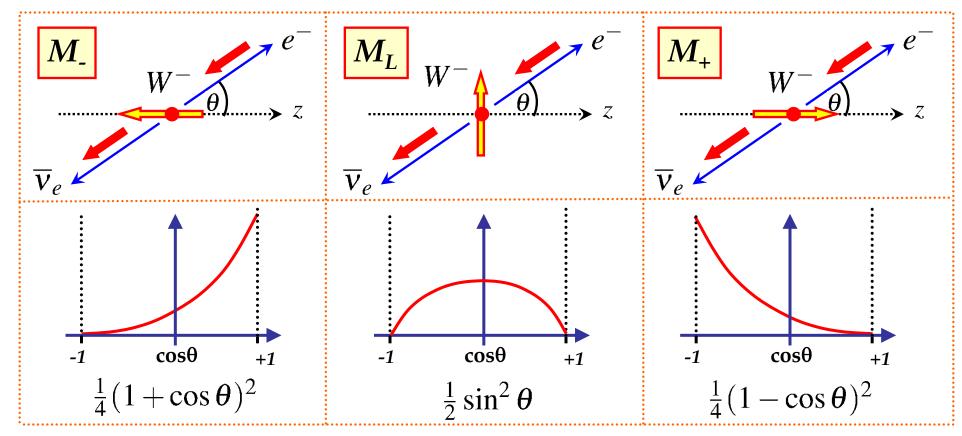
$$\mathcal{E}_{+}$$
 $M_{+} = -\frac{g_{W}}{\sqrt{2}} \frac{1}{\sqrt{2}} (0, 1, i, 0) . m_{W}(0, -\cos\theta, -i, \sin\theta) = \frac{1}{2} g_{W} m_{W}(1 - \cos\theta)$

$$|M_{-}|^{2} = g_{W}^{2} m_{W}^{2} \frac{1}{4} (1 + \cos \theta)^{2}$$

$$|M_{L}|^{2} = g_{W}^{2} m_{W}^{2} \frac{1}{2} \sin^{2} \theta$$

$$|M_{+}|^{2} = g_{W}^{2} m_{W}^{2} \frac{1}{4} (1 - \cos \theta)^{2}$$

★ The angular distributions can be understood in terms of the spin of the particles



★ The differential decay rate (see page 27) can be found using:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\Omega} = \frac{|p^*|}{32\pi^2 m_W^2} |M|^2$$

where p* is the C.o.M momentum of the final state particles, here $p^* = \frac{m_W}{2}$

★ Hence for the three different polarisations we obtain:

$$\frac{d\Gamma_{-}}{d\Omega} = \frac{g_W^2 m_w}{64\pi^2} \frac{1}{4} (1 + \cos\theta)^2 \qquad \frac{d\Gamma_L}{d\Omega} = \frac{g_W^2 m_w}{64\pi^2} \frac{1}{2} \sin^2\theta \qquad \frac{d\Gamma_{+}}{d\Omega} = \frac{g_W^2 m_w}{64\pi^2} \frac{1}{4} (1 - \cos\theta)^2$$

★ Integrating over all angles using

$$\int \frac{1}{4} (1 \pm \cos \theta)^2 d\phi d\cos \theta = \int \frac{1}{2} \sin^2 \theta d\phi d\cos \theta = \frac{4\pi}{3}$$

★ Gives

$$\Gamma_- = \Gamma_L = \Gamma_+ = rac{g_W^2 m_W}{48\pi}$$

- ★ The total W-decay rate is independent of polarization; this has to be the case as the decay rate cannot depend on the arbitrary definition of the z-axis
- **★** For a sample of unpolarized W boson each polarization state is equally likely, for the average matrix element sum over all possible matrix elements and average over the three initial polarization states

$$\langle |M_{fi}|^2 \rangle = \frac{1}{3} (|M_-|^2 + |M_L|^2 + |M_+|^2)$$

$$= \frac{1}{3} g_W^2 m_W^2 \left[\frac{1}{4} (1 + \cos \theta)^2 + \frac{1}{2} \sin^2 \theta + \frac{1}{4} (1 - \cos \theta)^2 \right]$$

$$= \frac{1}{3} g_W^2 m_W^2$$

★ For a sample of unpolarized W-bosons, the decay is isotropic (as expected)

★For this isotropic decay

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\Omega} = \frac{|p^*|}{32\pi^2 m_W^2} \langle |M|^2 \rangle \implies \Gamma = \frac{4\pi |p^*|}{32\pi^2 m_W^2} \langle |M|^2 \rangle$$

★ The calculation for the other decay modes (neglecting final state particle masses) is same. For quarks need to account for colour and CKM matrix. No decays to top – the top mass (175 GeV) is greater than the W-boson mass (80 GeV)

- \star Unitarity of CKM matrix gives, e.g. $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$
- *** Hence** $BR(W \rightarrow qq') = 6BR(W \rightarrow ev)$ and thus the total decay rate :

$$\Gamma_W = 9\Gamma_{W \to ev} = \frac{3g_W^2 m_W}{16\pi} = 2.07 \,\text{GeV}$$

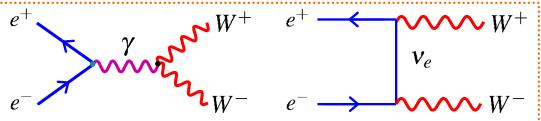
Experiment: 2.14±0.04 GeV

(our calculation neglected a 3% QCD correction to decays to quarks)

From W to Z

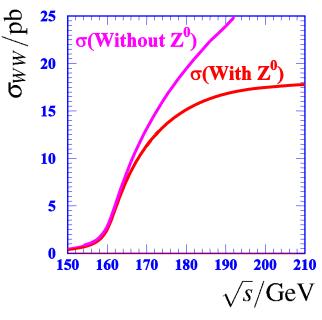
★ The W[±] bosons carry the EM charge - suggestive Weak are EM forces are related.

★ W bosons can be produced in e⁺e⁻ annihilation

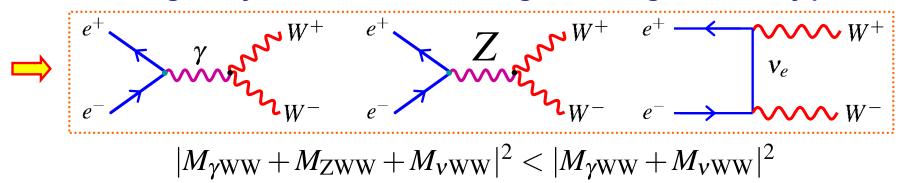


★ With just these two diagrams there is a problem: the cross section increases with C.o.M energy and at some point violates QM unitarity

UNITARITY VIOLATION: when QM calculation gives larger flux of W bosons than incoming flux of electrons/positrons



★ Problem can be "fixed" by introducing a new boson, the Z. The new diagram interferes negatively with the above two diagrams fixing the unitarity problem



★ Only works if Z, γ, W couplings are related: need ELECTROWEAK UNIFICATION

SU(2)₁: The Weak Interaction

★ The Weak Interaction arises from SU(2) local phase transformations

$$\psi \rightarrow \psi' = \psi e^{i\vec{\alpha}(x).\frac{\vec{\sigma}}{2}}$$

where the $\vec{\sigma}$ are the generators of the SU(2) symmetry, i.e the three Pauli spin matrices

 \longrightarrow 3 Gauge Bosons $W_1^{\mu}, W_2^{\mu}, W_3^{\mu}$

$$W_1^{\mu}, W_2^{\mu}, W_3^{\mu}$$

- **★** The wave-functions have two components which, in analogy with isospin, are represented by "weak isospin"
- **★** The fermions are placed in isospin doublets and the local phase transformation corresponds to

 $\begin{pmatrix} v_e \\ e^- \end{pmatrix} \rightarrow \begin{pmatrix} v_e \\ e^- \end{pmatrix}' = e^{i\vec{\alpha}(x) \cdot \frac{\vec{\sigma}}{2}} \begin{pmatrix} v_e \\ e^- \end{pmatrix}$

★ Weak Interaction only couples to LH particles/RH anti-particles, hence only place LH particles/RH anti-particles in weak isospin doublets: $I_W = \frac{1}{2}$ RH particles/LH anti-particles placed in weak isospin singlets: $I_W = 0$

Weak Isospin

$$I_W = \frac{1}{2}$$
 $\begin{pmatrix} v_e \\ e^- \end{pmatrix}_L$, $\begin{pmatrix} v_\mu \\ \mu^- \end{pmatrix}_L$, $\begin{pmatrix} v_\tau \\ \tau^- \end{pmatrix}_L$, $\begin{pmatrix} u \\ d' \end{pmatrix}_L$, $\begin{pmatrix} c \\ s' \end{pmatrix}_L$, $\begin{pmatrix} t \\ b' \end{pmatrix}_L$ $I_W^3 = +\frac{1}{2}$ $I_W^3 = -\frac{1}{2}$

$$I_W=0$$
 $(v_e)_R, \ (e^-)_R, ...(u)_R, \ (d)_R, ...$ Note: RH/LH refer to chiral states

$$\star$$ For simplicity only consider $\chi_L = \begin{pmatrix} v_{\rm e} \\ {\rm e}^- \end{pmatrix}_I$

•The gauge symmetry specifies the form of the interaction: one term for each of the 3 generators of SU(2) – [note: here include interaction strength in current]

$$j_{\mu}^{1} = g_{W}\overline{\chi}_{L}\gamma^{\mu}\frac{1}{2}\sigma_{1}\chi_{L} \qquad j_{\mu}^{2} = g_{W}\overline{\chi}_{L}\gamma^{\mu}\frac{1}{2}\sigma_{2}\chi_{L} \qquad j_{\mu}^{3} = g_{W}\overline{\chi}_{L}\gamma^{\mu}\frac{1}{2}\sigma_{3}\chi_{L}$$

★The charged current W⁺/W⁻ interaction enters as a linear combinations of W₁, W₂

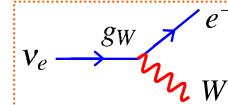
$$W^{\pm\mu} = \frac{1}{\sqrt{2}}(W_1^{\mu} \mp i W_2^{\mu})$$

★ The W[±] interaction terms

$$j_{\pm}^{\mu} = \frac{g_W}{\sqrt{2}}(j_1^{\mu} \mp i j_2^{\mu}) = \frac{g_W}{\sqrt{2}} \overline{\chi}_L \gamma^{\mu} \frac{1}{2} (\sigma_1 \mp i \sigma_2) \chi_L$$

***** Express in terms of the weak isospin ladder operators $\sigma_{\pm} = \frac{1}{2}(\sigma_1 \pm i\sigma_2)$

$$j_\pm^\mu = rac{g_W}{\sqrt{2}} \overline{\chi}_L \gamma^\mu \sigma_\mp \chi_L$$
 $brace$ Origin of $rac{1}{\sqrt{2}}$ in Weak CC



$$v_e$$
 corresponds to $j_+^\mu = rac{g_W}{\sqrt{2}} \overline{\chi}_L \gamma^\mu \sigma_- \chi_L$

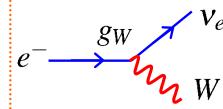
which can be understood in terms of the weak isospin doublet

Bars indicates adjoint spinors

$$j_{+}^{\mu} = \frac{g_W}{\sqrt{2}} \overline{\chi}_L \gamma^{\mu} \sigma_{-} \chi_L = \frac{g_W}{\sqrt{2}} (\overline{v}_L, \overline{e}_L) \gamma^{\mu} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v \\ e \end{pmatrix}_L = \frac{g_W}{\sqrt{2}} \overline{e}_L \gamma^{\mu} v_L = \frac{g_W}{\sqrt{2}} \overline{e} \gamma^{\mu} \frac{1}{2} (1 - \gamma^5) v$$

Particle Physics 474 Dr. A. Mitov

★ Similarly



corresponds to
$$j_-^\mu = \frac{g_W}{\sqrt{2}} \overline{\chi}_L \gamma^\mu \sigma_+ \chi_L$$

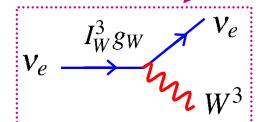
$$j_{-}^{\mu} = \frac{g_W}{\sqrt{2}} \overline{\chi}_L \gamma^{\mu} \sigma_{+} \chi_L = \frac{g_W}{\sqrt{2}} (\overline{v}_L, \overline{e}_L) \gamma^{\mu} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v \\ e \end{pmatrix}_L = \frac{g_W}{\sqrt{2}} \overline{v}_L \gamma^{\mu} e_L = \frac{g_W}{\sqrt{2}} \overline{v} \gamma^{\mu} \frac{1}{2} (1 - \gamma^5) e$$

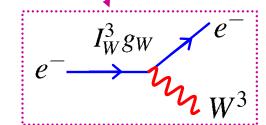
★However have an additional interaction due to W³

expanding this:

$$j_3^\mu = g_W \overline{\chi}_L \gamma^\mu rac{1}{2} oldsymbol{\sigma}_3 \chi_L$$
ng this:

ding this:
$$j_3^{\mu} = g_W \frac{1}{2} (\overline{\mathbf{v}}_L, \overline{\mathbf{e}}_L) \gamma^{\mu} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{v} \\ e \end{pmatrix}_L = g_W \frac{1}{2} \overline{\mathbf{v}}_L \gamma^{\mu} \mathbf{v}_L - g_W \frac{1}{2} \overline{\mathbf{e}}_L \gamma^{\mu} \mathbf{e}_L$$





Electroweak Unification

- ★Tempting to identify the W^3 as the Z
- *****However this is not the case, have two physical neutral spin-1 gauge bosons, γ, Z and the W^3 is a mixture of the two,
- \star Equivalently write the photon and $\,Z\,$ in terms of the $\,W^3\,$ and a new neutral spin-1 boson the $\,B\,$
- **★**The physical bosons (the Z and photon field, A) are:

$$A_{\mu} = B_{\mu} \cos \theta_W + W_{\mu}^3 \sin \theta_W$$

$$Z_{\mu} = -B_{\mu} \sin \theta_W + W_{\mu}^3 \cos \theta_W$$

 θ_W is the weak mixing angle

- **★**The new boson is associated with a new gauge symmetry similar to that of electromagnetism : U(1)_y
- **\star** The charge of this symmetry is called WEAK HYPERCHARGE Y

$$e^{-} \xrightarrow{\frac{1}{2}g'Y} e^{-}$$

$$Y = 2Q - 2I_W^3$$
 Q is the EM charge of a particle I_W^3 is the third comp. of weak isospin

•By convention the coupling to the
$$B_{\mu}$$
 is $\frac{1}{2}g'Y$

$$e^{-\frac{1}{2}g'Y}$$
 e
 $e_L: Y = 2(-1) - 2(-\frac{1}{2}) = -1$
 $v_L: Y = -1$
 $v_L: Y = 0$

$$e_R: Y = 2(-1) - 2(0) = -2$$
 $V_R: Y = 0$

(this identification of hypercharge in terms of Q and I₃ makes all of the following work out)

★ For this to work the coupling constants of the W³, B, and photon must be related e.g. consider contributions involving the neutral interactions of electrons:

$$\begin{aligned} \mathbf{j}_{\mu}^{em} &= e \overline{\psi} Q_e \gamma_{\mu} \psi = e \overline{\mathbf{e}}_L Q_{\mathbf{e}} \gamma_{\mu} \mathbf{e}_L + e \overline{\mathbf{e}}_R Q_e \gamma_{\mu} \mathbf{e}_R \\ \mathbf{W}^3 & j_{\mu}^{W^3} = -\frac{g_W}{2} \overline{\mathbf{e}}_L \gamma_{\mu} \mathbf{e}_L \\ \mathbf{B} & j_{\mu}^Y &= \frac{g'}{2} \overline{\psi} Y_e \gamma_{\mu} \psi = \frac{g'}{2} \overline{\mathbf{e}}_L Y_{\mathbf{e}_L} \gamma_{\mu} \mathbf{e}_L + \frac{g'}{2} \overline{\mathbf{e}}_R Y_{\mathbf{e}_R} \gamma_{\mu} \mathbf{e}_R \end{aligned}$$

 \star The relation $A_{\mu}=B_{\mu}\cos heta_W+W_{\mu}^3\sin heta_W$ is equivalent to requiring

$$j_{\mu}^{em} = j_{\mu}^{Y} \cos \theta_{W} + j_{\mu}^{W^{3}} \sin \theta_{W}$$

•Writing this in full:

$$\begin{split} e\overline{\mathbf{e}}_LQ_{\mathbf{e}}\gamma_{\mu}\mathbf{e}_L + e\overline{\mathbf{e}}_RQ_{e}\gamma_{\mu}\mathbf{e}_R &= \tfrac{1}{2}g'\cos\theta_W[\overline{\mathbf{e}}_LY_{\mathbf{e}_L}\gamma_{\mu}\mathbf{e}_L + \overline{\mathbf{e}}_RY_{\mathbf{e}_R}\gamma_{\mu}\mathbf{e}_R] - \tfrac{1}{2}g_W\sin\theta_W[\overline{\mathbf{e}}_L\gamma_{\mu}e_L] \\ -e\overline{\mathbf{e}}_L\gamma_{\mu}\mathbf{e}_L - e\overline{\mathbf{e}}_R\gamma_{\mu}\mathbf{e}_R &= \tfrac{1}{2}g'\cos\theta_W[-\overline{\mathbf{e}}_L\gamma_{\mu}\mathbf{e}_L - 2\overline{\mathbf{e}}_R\gamma_{\mu}\mathbf{e}_R] - \tfrac{1}{2}g_W\sin\theta_W[\overline{\mathbf{e}}_L\gamma_{\mu}e_L] \\ \text{which works if:} \qquad e = g_W\sin\theta_W = g'\cos\theta_W \qquad \text{(i.e. equate coefficients of L and R terms)} \end{split}$$

★ Couplings of electromagnetism, the weak interaction and the interaction of the U(1)_Y symmetry are therefore related.

The Z Boson

★In this model we can now derive the couplings of the Z Boson

$$Z_{\mu} = -B_{\mu} \sin \theta_W + W_{\mu}^3 \cos \theta_W \qquad \boxed{I_W^3} \qquad \text{for the electron } I_W^3 = -\frac{1}{2}$$

$$j_{\mu}^Z = -\frac{1}{2}g' \sin \theta_W [\bar{e}_L Y_{e_L} \gamma_{\mu} e_L + \bar{e}_R Y_{e_R} \gamma_{\mu} e_R] - \frac{1}{2}g_W \cos \theta_W [\bar{e}_L \gamma_{\mu} e_L]$$

·Writing this in terms of weak isospin and charge:

$$j_{\mu}^{Z} = -\frac{1}{2}g'\sin\theta_{W}\left[\overline{e}_{L}\left(2Q - 2I_{W}^{3}\right)\gamma_{\mu}e_{L} + \overline{e}_{R}\left(2Q\right)\gamma_{\mu}e_{R}\right] + I_{W}^{3}g_{W}\cos\theta_{W}\left[\overline{e}_{L}\gamma_{\mu}e_{L}\right]$$

For RH chiral states I₃=0

Gathering up the terms for LH and RH chiral states:

$$j_{\mu}^{Z} = \left[g' I_{W}^{3} \sin \theta_{W} - g' Q \sin \theta_{W} + g_{W} I_{W}^{3} \cos \theta_{W} \right] \overline{e}_{L} \gamma_{\mu} e_{L} - \left[g' Q \sin \theta_{W} \right] \overline{e}_{R} \gamma_{\mu} e_{R}$$

•Using:
$$e = g_W \sin \theta_W = g' \cos \theta_W$$
 gives

$$j_{\mu}^{Z} = \left[g' \frac{(I_{W}^{3} - Q \sin^{2} \theta_{W})}{\sin \theta_{W}} \right] \overline{e}_{L} \gamma_{\mu} e_{L} - \left[g' \frac{Q \sin^{2} \theta_{W}}{\sin \theta_{W}} \right] \overline{e}_{R} \gamma_{\mu} e_{R}$$

$$j_{\mu}^{Z} = g_{Z}(I_{W}^{3} - Q\sin^{2}\theta_{W})[\overline{e}_{L}\gamma_{\mu}e_{L}] - g_{Z}Q\sin^{2}\theta_{W}[\overline{e}_{R}\gamma_{\mu}e_{R}]$$

with
$$e = g_Z \cos \theta_W \sin \theta_W$$
 i.e. $g_Z = \frac{g_W}{\cos \theta_W}$

★ Unlike for the Charged Current Weak interaction (W) the Z Boson couples to both LH and RH chiral components, but not equally...

★ Use projection operators to obtain vector and axial vector couplings

$$\overline{u}_{L}\gamma_{\mu}u_{L} = \overline{u}\gamma_{\mu}\frac{1}{2}(1-\gamma_{5})u \qquad \overline{u}_{R}\gamma_{\mu}u_{R} = \overline{u}\gamma_{\mu}\frac{1}{2}(1+\gamma_{5})u
j_{\mu}^{Z} = g_{Z}\overline{u}\gamma_{\mu}\left[c_{L}\frac{1}{2}(1-\gamma_{5}) + c_{R}\frac{1}{2}(1+\gamma_{5})\right]u$$

$$j_{\mu}^{Z} = \frac{g_{Z}}{2} \overline{u} \gamma_{\mu} \left[(c_{L} + c_{R}) + (c_{R} - c_{L}) \gamma_{5} \right] u$$

★ Which in terms of V and A components gives:

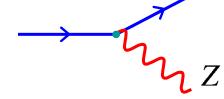
$$j_{\mu}^{Z} = \frac{g_{Z}}{2} \overline{u} \gamma_{\mu} \left[c_{V} - c_{A} \gamma_{5} \right] u$$

$$c_V = c_L + c_R = I_W^3 - 2Q\sin^2\theta_W$$
 $c_A = c_L - c_R = I_W^3$

$$c_A = c_L - c_R = I_W^3$$

★ Hence the vertex factor for the Z boson is:

$$-ig_Zrac{1}{2}\gamma_\mu\left[c_V-c_A\gamma_5
ight]$$



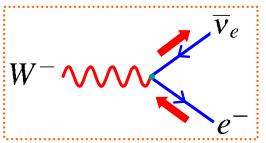
\star Using the experimentally determined value of the weak mixing angle: $\sin^2 \theta_W \approx 0.23$

Fermion	Q	$_{L}I_{W}^{3}$ $_{R}$		c_L	c_R	c_V	c_A
$ u_e, u_\mu, u_ au$	0	$+\frac{1}{2}$	0	$+\frac{1}{2}$	0	$+\frac{1}{2}$	$+\frac{1}{2}$
e^-, μ^-, au^-	-1	$-\frac{1}{2}$	0	-0.27	0.23	-0.04	$-\frac{1}{2}$
u, c, t	$+\frac{2}{3}$	$+\frac{1}{2}$	0	0.35	-0.15	+0.19	$+\frac{1}{2}$
d, s, b	$-\frac{1}{3}$	$-\frac{1}{2}$	0	-0.42	0.08	-0.35	$-\frac{1}{2}$

480 Dr. A. Mitov Particle Physics

Z Boson Decay : Γ_{z}

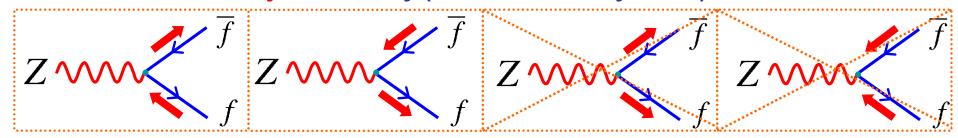
★ In W-boson decay only had to consider one helicity combination of (assuming we can neglect final state masses: helicity states = chiral states)



W-boson couples:

to LH particles and RH anti-particles

- **★** But Z-boson couples to LH and RH particles (with different strengths)
- **★** Need to consider only two helicity (or more correctly chiral) combinations:



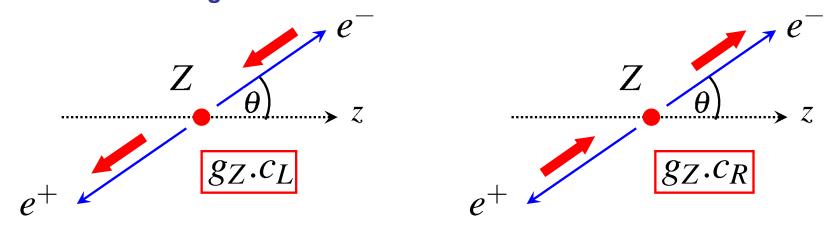
This can be seen by considering either of the combinations which give zero

e.g.
$$\overline{u}_R \gamma^{\mu} (c_V + c_A \gamma_5) v_R = u^{\dagger} \frac{1}{2} (1 + \gamma^5) \gamma^0 \gamma^{\mu} (c_V + c_A \gamma^5) \frac{1}{2} (1 - \gamma^5) v$$

$$= \frac{1}{4} u^{\dagger} \gamma^0 (1 - \gamma^5) \gamma^{\mu} (1 - \gamma^5) (c_V + c_A \gamma^5) v$$

$$= \frac{1}{4} \overline{u} \gamma^{\mu} (1 + \gamma^5) (1 - \gamma^5) (c_V + c_A \gamma_5) v = 0$$

★ In terms of left and right-handed combinations need to calculate:



★ For unpolarized Z bosons: (Question 26)

$$\langle |M_{fi}|^2 \rangle = \frac{1}{3} [2c_L^2 g_Z^2 m_Z^2 + 2c_R^2 g_Z^2 m_Z^2] = \frac{2}{3} g_Z^2 m_Z^2 (c_L^2 + c_R^2)$$

average over polarization

*** Using**
$$c_V^2 + c_A^2 = 2(c_L^2 + c_R^2)$$
 and $\frac{\mathrm{d}\Gamma}{\mathrm{d}\Omega} = \frac{|p^*|}{32\pi^2 m_W^2} |M|^2$

$$\Gamma(Z \to e^+ e^-) = \frac{g_Z^2 m_Z}{48\pi} (c_V^2 + c_A^2)$$

★ (Neglecting fermion masses) obtain the same expression for the other decays

$$\Gamma(Z \to f\overline{f}) = \frac{g_Z^2 m_Z}{48\pi} (c_V^2 + c_A^2)$$

•Using values for c_V and c_A on page 471 obtain:

$$Br(Z \to e^{+}e^{-}) = Br(Z \to \mu^{+}\mu^{-}) = Br(Z \to \tau^{+}\tau^{-}) \approx 3.5\%$$

$$Br(Z \to v_{1}\overline{v}_{1}) = Br(Z \to v_{2}\overline{v}_{2}) = Br(Z \to v_{3}\overline{v}_{3}) \approx 6.9\%$$

$$Br(Z \to d\overline{d}) = Br(Z \to s\overline{s}) = Br(Z \to b\overline{b}) \approx 15\%$$

$$Br(Z \to u\overline{u}) = Br(Z \to c\overline{c}) \approx 12\%$$

The Z Boson therefore predominantly decays to hadrons

$$Br(Z \rightarrow \text{hadrons}) \approx 69\%$$

Mainly due to factor 3 from colour

Also predict total decay rate (total width)

$$\Gamma_Z = \sum_i \Gamma_i = 2.5 \,\text{GeV}$$

Experiment:

$$\Gamma_Z = 2.4952 \pm 0.0023 \,\text{GeV}$$

Summary

- **★** The Standard Model interactions are mediated by spin-1 gauge bosons
- ★ The form of the interactions are completely specified by the assuming an underlying local phase transformation → GAUGE INVARIANCE

★ In order to "unify" the electromagnetic and weak interactions, introduced a new symmetry gauge symmetry : U(1) hypercharge

$$U(1)_Y$$
 \Longrightarrow B_{μ}

★ The physical Z boson and the photon are mixtures of the neutral W boson and B determined by the Weak Mixing angle

$$\sin^2\!\!\theta_W \approx 0.23$$

- ★ Have we really unified the EM and Weak interactions? Well not really...
 - •Started with two independent theories with coupling constants g_W, e
 - •Ended up with coupling constants which are related but at the cost of introducing a new parameter in the Standard Model $\, heta_{\!W}$
 - •Interactions not unified from any higher theoretical principle... but it works!

Appendix I: Photon Polarization

• For a free photon (i.e. $j^{\mu}=0$) equation (A7) becomes

(Non-examinable)

$$\Box^2 A^{\mu} = 0$$

(B1)

(note have chosen a gauge where the Lorentz condition is satisfied)

★ Equation (A8) has solutions (i.e. the wave-function for a free photon)

$$A^{\mu} = \varepsilon^{\mu}(q)e^{-iq.x}$$

where $arepsilon^{\mu}$ is the four-component polarization vector and q is the photon four-momentum

$$0 = \Box^2 A^{\mu} = -q^2 \varepsilon^{\mu} e^{-iq \cdot x}$$
$$\Rightarrow q^2 = 0$$

- **★** Hence equation (B1) describes a massless particle.
- ★ But the solution has four components might ask how it can describe a spin-1 particle which has three polarization states?
- **★** But for (A8) to hold we must satisfy the Lorentz condition:

$$0 = \partial_{\mu}A^{\mu} = \partial_{\mu}(\varepsilon^{\mu}e^{-iq.x}) = \varepsilon^{\mu}\partial_{\nu}(e^{-iq.x}) = -i\varepsilon^{\mu}q_{\mu}e^{-iq.x}$$

Hence the Lorentz condition gives

$$q_{\mu} \varepsilon^{\mu} = 0$$

(B2)

i.e. only 3 independent components.

- ***** However, in addition to the Lorentz condition still have the addional gauge freedom of $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} + \partial_{\mu} \Lambda$ with (A8) $\Box^2 \Lambda = 0$
- •Choosing $\Lambda=iae^{-iq.x}$ which has $\Box^2\Lambda=q^2\Lambda=0$ $A_\mu\to A'_\mu=A_\mu+\partial_\mu\Lambda = \varepsilon_\mu e^{-iq.x}+ia\partial_\mu e^{-iq.x}$ $=\varepsilon_\mu e^{-iq.x}+ia(-iq_\mu)e^{-iq.x}$
- ★ Hence the electromagnetic field is left unchanged by

$$\varepsilon_{\mu} \rightarrow \varepsilon_{\mu}' = \varepsilon_{\mu} + aq_{\mu}$$

***** Hence the two polarization vectors which differ by a mulitple of the photon four-momentum describe the same photon. Choose a such that the time-like component of $\mathcal{E}_{\mathcal{U}}$ is zero, i.e. $\mathcal{E}_0 \equiv 0$

 $= (\varepsilon_{\mu} + aq_{\mu})e^{-iq.x}$

★ With this choice of gauge, which is known as the COULOMB GAUGE, the Lorentz condition (B2) gives

$$\vec{\varepsilon} \cdot \vec{q} = 0$$
 (B3)

i.e. only 2 independent components, both transverse to the photons momentum

★ A massless photon has two transverse polarisation states. For a photon travelling in the z direction these can be expressed as the transversly polarized states:

$$\varepsilon_1^{\mu} = (0, 1, 0, 0); \qquad \varepsilon_2^{\mu} = (0, 0, 1, 0)$$

★ Alternatively take linear combinations to get the circularly polarized states

$$\varepsilon_{-}^{\mu} = \frac{1}{\sqrt{2}}(0, 1, -i, 0); \qquad \varepsilon_{+}^{\mu} = -\frac{1}{\sqrt{2}}(0, 1, i, 0)$$

***** It can be shown that the \mathcal{E}_+ state corresponds the state in which the photon spin is directed in the +z direction, i.e. $S_z=+1$

Appendix II: Massive Spin-1 particles

(Non-examinable)

 For a massless photon we had (before imposing the Lorentz condition) we had from equation (A5)

$$\Box^2 A^{\mu} - \partial^{\mu} (\partial_{\nu} A^{\nu}) = j^{\mu}$$

★The Klein-Gordon equation for a spin-0 particle of mass m is

$$(\Box^2 + m^2)\phi = 0$$

suggestive that the appropriate equations for a massive spin-1 particle can be obtained by replacing $\Box^2 \to \Box^2 + m^2$

★ This is indeed the case, and from QFT it can be shown that for a massive spin 1 particle equation (A5) becomes

$$(\Box^2 + m^2)B^{\mu} - \partial^{\mu}(\partial_{\nu}B^{\nu}) = j^{\mu}$$

★ Therefore a free particle must satisfy

$$(\Box^2 + m^2)B^{\mu} - \partial^{\mu}(\partial_{\nu}B^{\nu}) = 0 \tag{B4}$$

•Acting on equation (B4) with ∂_{ν} gives

$$(\Box^{2} + m^{2})\partial_{\mu}B^{\mu} - \partial_{\mu}\partial^{\mu}(\partial_{\nu}B^{\nu}) = 0$$

$$(\Box^{2} + m^{2})\partial_{\mu}B^{\mu} - \Box^{2}(\partial_{\nu}B^{\nu}) = 0$$

$$m^{2}\partial_{\mu}B^{\mu} = 0$$
(B5)

- ***** Hence, for a massive spin-1 particle, unavoidably have $\partial_{\mu}B^{\mu}=0$; note this is not a relation that reflects to choice of gauge.
- Equation (B4) becomes

$$(\Box^2 + m^2)B^{\mu} = 0 {(B6)}$$

- \star For a free spin-1 particle with 4-momentum, p^μ , equation (B6) admits solutions $B_\mu=arepsilon_\mu e^{-ip.x}$
- **★** Substituting into equation (B5) gives

$$p_{\mu}\varepsilon^{\mu}=0$$

★The four degrees of freedom in \mathcal{E}^{μ} are reduced to three, but for a massive particle, equation (B6) does <u>not</u> allow a choice of gauge and we can not reduce the number of degrees of freedom any further.

★ Hence we need to find three orthogonal polarisation states satisfying

$$p_{\mu}\varepsilon^{\mu} = 0 \tag{B7}$$

★ For a particle travelling in the z direction, can still admit the circularly polarized states.

$$\varepsilon_{-}^{\mu} = \frac{1}{\sqrt{2}}(0, 1, -i, 0); \qquad \varepsilon_{+}^{\mu} = -\frac{1}{\sqrt{2}}(0, 1, i, 0)$$

★ Writing the third state as

$$arepsilon_L^\mu = rac{1}{\sqrt{lpha^2 + eta^2}}(lpha,0,0,eta)$$

equation (B7) gives $\alpha E - \beta p_z = 0$

$$\Longrightarrow \qquad \varepsilon_L^{\mu} = \frac{1}{m}(p_z, 0, 0, E)$$

★ This <u>longitudinal</u> polarisation state is only present for massive spin-1 particles, i.e. there is no analogous state for a free photon (although off-mass shell virtual photons can be longitudinally polarized – a fact that was alluded to on page 114).