Particle Physics

Dr. Alexander Mitov

Handout 13 : Electroweak Unification and the W and Z Bosons

Boson Polarization States

夫 In this handout we are going to consider the decays of W and Z bosons, for this we will need to consider the polarization. Here simply quote results although the justification is given in Appendices I and II

* A real (i.e. not virtual) massless spin-1 boson can exist in two transverse polarization states, a massive spin-1 boson also can be longitudinally polarized
\star Boson wave-functions are written in terms of the polarization four-vector ε^{μ}

$$
B^{\mu}=\varepsilon^{\mu} e^{-i p . x}=\varepsilon^{\mu} e^{i(\vec{p} \cdot \vec{x}-E t)}
$$

\star For a spin-1 boson travelling along the z-axis, the polarization four vectors are:

Longitudinal polarization isn't present for on-shell massless particles, the photon can exist in two helicity states $h= \pm 1 \quad$ (LH and RH circularly polarized light)

W-Boson Decay

\star To calculate the \mathbf{W}-Boson decay rate first consider $W^{-} \rightarrow e^{-} \bar{v}_{e}$
\star Want matrix element for :

$$
-i M_{f i}=\varepsilon_{\mu}\left(p_{1}\right) \cdot \bar{u}\left(p_{3}\right) \cdot-i \frac{g_{W}}{\sqrt{2}} \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) \cdot v\left(p_{4}\right)
$$

$$
M_{f i}=\frac{g_{W}}{\sqrt{2}} \varepsilon_{\mu}\left(p_{1}\right) \bar{u}\left(p_{3}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) v\left(p_{4}\right)
$$

\star This can be written in terms of the four-vector scalar product of the W-boson polarization $\varepsilon_{\mu}\left(p_{1}\right)$ and the weak charged current j^{μ}

$$
M_{f i}=\frac{g_{W}}{\sqrt{2}} \varepsilon_{\mu}\left(p_{1}\right) \cdot j^{\mu} \quad \text { with } \quad j^{\mu}=\bar{u}\left(p_{3}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) v\left(p_{4}\right)
$$

W-Decay : The Lepton Current

\star First consider the lepton current $j^{\mu}=\bar{u}\left(p_{3}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) v\left(p_{4}\right)$

* Work in Centre-of-Mass frame

^ In the ultra-relativistic limit only LH particles and RH anti-particles participate in the weak interaction so

$$
j^{\mu}=\bar{u}\left(p_{3}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) v\left(p_{4}\right)=\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\mu} \nu_{\uparrow}\left(p_{4}\right)
$$

Note: $\quad \frac{1}{2}\left(1-\gamma^{5}\right) v\left(p_{4}\right)=v_{\uparrow}\left(p_{4}\right)$

$$
\bar{u}\left(p_{3}\right) \gamma^{\mu} v_{\uparrow}\left(p_{4}\right)=\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\mu} v_{\uparrow}\left(p_{4}\right)
$$

Chiral projection operator, e.g. see p. 131 or p. 294
"Helicity conservation", e.g. see p. 133 or p. 295
-We have already calculated the current

$$
j^{\mu}=\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\mu} v_{\uparrow}\left(p_{4}\right)
$$

when considering $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$

-For the charged current weak Interaction we only have to consider this single combination of helicities

$$
j^{\mu}=\bar{u}\left(p_{3}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) v\left(p_{4}\right)=\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\mu} v_{\uparrow}\left(p_{4}\right)=2 E(0,-\cos \theta,-i, \sin \theta)
$$

and the three possible W-Boson polarization states:

ฝ For a W-boson at rest these become:

$$
\varepsilon_{-}^{\mu}=\frac{1}{\sqrt{2}}(0,1,-i, 0) ; \quad \varepsilon_{L}=(0,0,0,1) \quad \varepsilon_{+}^{\mu}=-\frac{1}{\sqrt{2}}(0,1, i, 0)
$$

* Can now calculate the matrix element for the different polarization states

$$
M_{f i}=\frac{g_{W}}{\sqrt{2}} \varepsilon_{\mu}\left(p_{1}\right) j^{\mu} \quad \text { with } \quad j^{\mu}=2 \frac{m_{W}}{2}(0,-\cos \theta,-i, \sin \theta)
$$

* giving

$$
\text { Decay at rest: } E_{e}=E_{v}=m_{w} / 2
$$

$\varepsilon_{-} M_{-}=\frac{g_{W}}{\sqrt{2}} \frac{1}{\sqrt{2}}(0,1,-i, 0) \cdot m_{W}(0,-\cos \theta,-i, \sin \theta)=\frac{1}{2} g_{W} m_{W}(1+\cos \theta)$
$\varepsilon_{L} M_{L}=\frac{g_{W}}{\sqrt{2}}(0,0,0,1) \cdot m_{W}(0,-\cos \theta,-i, \sin \theta)=-\frac{1}{\sqrt{2}} g_{W} m_{W} \sin \theta$
$\varepsilon_{+} M_{+}=-\frac{g_{W}}{\sqrt{2}} \frac{1}{\sqrt{2}}(0,1, i, 0) \cdot m_{W}(0,-\cos \theta,-i, \sin \theta)=\frac{1}{2} g_{W} m_{W}(1-\cos \theta)$

$$
\begin{aligned}
& \left|M_{-}\right|^{2}=g_{W}^{2} m_{W}^{2} \frac{1}{4}(1+\cos \theta)^{2} \\
& \left|M_{L}\right|^{2}=g_{W}^{2} m_{W}^{2} \frac{1}{2} \sin ^{2} \theta \\
& \left|M_{+}\right|^{2}=g_{W}^{2} m_{W}^{2} \frac{1}{4}(1-\cos \theta)^{2}
\end{aligned}
$$

* The angular distributions can be understood in terms of the spin of the particles

$$
\frac{1}{4}(1+\cos \theta)^{2}
$$

\star The differential decay rate (see page 27) can be found using:

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} \Omega}=\frac{\left|p^{*}\right|}{32 \pi^{2} m_{W}^{2}}|M|^{2}
$$

where \mathbf{p}^{*} is the C.o.M momentum of the final state particles, here $p^{*}=\frac{m_{W}}{2}$
\star Hence for the three different polarisations we obtain:

$$
\frac{\mathrm{d} \Gamma_{-}}{\mathrm{d} \Omega}=\frac{g_{W}^{2} m_{w}}{64 \pi^{2}} \frac{1}{4}(1+\cos \theta)^{2} \quad \frac{\mathrm{~d} \Gamma_{L}}{\mathrm{~d} \Omega}=\frac{g_{W}^{2} m_{w}}{64 \pi^{2}} \frac{1}{2} \sin ^{2} \theta \quad \frac{\mathrm{~d} \Gamma_{+}}{\mathrm{d} \Omega}=\frac{g_{W}^{2} m_{w}}{64 \pi^{2}} \frac{1}{4}(1-\cos \theta)^{2}
$$

* Integrating over all angles using

$$
\int \frac{1}{4}(1 \pm \cos \theta)^{2} \mathrm{~d} \phi \mathrm{~d} \cos \theta=\int \frac{1}{2} \sin ^{2} \theta \mathrm{~d} \phi \mathrm{~d} \cos \theta=\frac{4 \pi}{3}
$$

* Gives

$$
\Gamma_{-}=\Gamma_{L}=\Gamma_{+}=\frac{g_{W}^{2} m_{W}}{48 \pi}
$$

\star The total W-decay rate is independent of polarization; this has to be the case as the decay rate cannot depend on the arbitrary definition of the z-axis
\star For a sample of unpolarized \mathbf{W} boson each polarization state is equally likely, for the average matrix element sum over all possible matrix elements and average over the three initial polarization states

$$
\begin{aligned}
\left.\left.\langle | M_{f i}\right|^{2}\right\rangle & =\frac{1}{3}\left(\left|M_{-}\right|^{2}+\left|M_{L}\right|^{2}+\left|M_{+}\right|^{2}\right) \\
& =\frac{1}{3} g_{W}^{2} m_{W}^{2}\left[\frac{1}{4}(1+\cos \theta)^{2}+\frac{1}{2} \sin ^{2} \theta+\frac{1}{4}(1-\cos \theta)^{2}\right] \\
& =\frac{1}{3} g_{W}^{2} m_{W}^{2}
\end{aligned}
$$

夫 For a sample of unpolarized W-bosons, the decay is isotropic (as expected)
\star For this isotropic decay

$$
\begin{aligned}
\left.\frac{\mathrm{d} \Gamma}{\mathrm{~d} \Omega}=\left.\frac{\left|p^{*}\right|}{32 \pi^{2} m_{W}^{2}}\langle | M\right|^{2}\right\rangle & \left.\Rightarrow \Gamma=\left.\frac{4 \pi\left|p^{*}\right|}{32 \pi^{2} m_{W}^{2}}\langle | M\right|^{2}\right\rangle \\
& \Rightarrow \Gamma \Gamma\left(W^{-} \rightarrow e^{-\bar{v}}\right)=\frac{g_{W}^{2} m_{W}}{48 \pi}
\end{aligned}
$$

\star The calculation for the other decay modes (neglecting final state particle masses) is same. For quarks need to account for colour and CKM matrix. No decays to top - the top mass (175 GeV) is greater than the W-boson mass (80 GeV)

$$
\begin{array}{ll|l|l|}
W^{-} \rightarrow e^{-} \bar{v}_{e} & W^{-} \rightarrow d \bar{u} & \begin{array}{ll}
\times 3\left|V_{u d}\right|^{2} \\
W^{-} \rightarrow \mu^{-} \bar{v}_{\mu} & W^{-} \rightarrow s \bar{u} \\
W^{-} \rightarrow \tau^{-} \bar{v}_{\tau} & W^{-} \rightarrow b \bar{u}
\end{array} \begin{array}{l}
W^{-} \rightarrow d \bar{c} \\
\times 3\left|V_{u s}\right|^{2} \\
\times 3\left|V_{u b}\right|^{2}
\end{array} & W^{-} \rightarrow s \bar{c} \\
\hline \times 3\left|V_{c s}\right|^{2} \\
W^{-} \rightarrow b \bar{c} & \times 3\left|V_{c b}\right|^{2} \\
\hline
\end{array}
$$

\star Unitarity of CKM matrix gives, e.g. $\quad\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1$
\star Hence $B R\left(\mathrm{~W} \rightarrow q q^{\prime}\right)=6 B R(\mathrm{~W} \rightarrow \mathrm{e} v)$
and thus the total decay rate :

$$
\Gamma_{W}=9 \Gamma_{W \rightarrow e v}=\frac{3 g_{W}^{2} m_{W}}{16 \pi}=2.07 \mathrm{GeV}
$$

Experiment: 2.14士0.04 GeV (our calculation neglected a 3\% QCD correction to decays to quarks)

From W to Z

\star The $\mathbf{W}^{ \pm}$bosons carry the EM charge - suggestive Weak are EM forces are related.
\star W bosons can be produced in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

\star With just these two diagrams there is a problem: the cross section increases with C.o.M energy and at some point violates QM unitarity

UNITARITY VIOLATION: when QM calculation gives larger flux of W bosons than incoming flux of electrons/positrons

* Problem can be "fixed" by introducing a new boson, the Z. The new diagram interferes negatively with the above two diagrams fixing the unitarity problem

$$
\left|M_{\gamma \mathrm{WW}}+M_{\mathrm{ZWW}}+M_{\nu \mathrm{WW}}\right|^{2}<\left|M_{\gamma \mathrm{WW}}+M_{\nu \mathrm{WW}}\right|^{2}
$$

\star Only works if Z, γ, \mathbf{W} couplings are related: need ELECTROWEAK UNIFICATION

SU(2) $)_{\text {: }}$ The Weak Interaction

* The Weak Interaction arises from $\operatorname{SU}(2)$ local phase transformations

$$
\psi \rightarrow \psi^{\prime}=\psi e^{i \vec{\alpha}(x) \cdot \overrightarrow{\frac{\vec{\sigma}}{2}}}
$$

where the $\vec{\sigma}$ are the generators of the $\operatorname{SU}(2)$ symmetry, i.e the three Pauli spin matrices

$$
3 \text { Gauge Bosons } \quad W_{1}^{\mu}, W_{2}^{\mu}, W_{3}^{\mu}
$$

\star The wave-functions have two components which, in analogy with isospin, are represented by "weak isospin"
\star The fermions are placed in isospin doublets and the local phase transformation corresponds to

$$
\binom{\nu_{e}}{e^{-}} \rightarrow\binom{\nu_{e}}{e^{-}}^{\prime}=e^{i \vec{\alpha}(x) \cdot \frac{\vec{\sigma}}{2}}\binom{\nu_{e}}{e^{-}}
$$

* Weak Interaction only couples to LH particles/RH anti-particles, hence only place LH particles/RH anti-particles in weak isospin doublets: $I_{W}=\frac{1}{2}$ RH particles/LH anti-particles placed in weak isospin singlets: $I_{W}=0$

Weak Isospin

$$
\left.\begin{array}{c}
v_{e} \\
e^{-}
\end{array}\right)_{L},\binom{v_{\mu}}{\mu^{-}}_{L},\binom{v_{\tau}}{\tau^{-}}_{L},\binom{u}{d^{\prime}}_{L},\binom{c}{s^{\prime}}_{L},\binom{t}{b^{\prime}}_{L}
$$

$$
I_{W}=0 \quad\left(v_{e}\right)_{R},\left(e^{-}\right)_{R}, \ldots(u)_{R},(d)_{R}, \ldots \quad \text { Note: } \mathrm{RH} / \mathrm{LH} \text { refer to chiral states }
$$

\star For simplicity only consider $\quad \chi_{L}=\binom{\nu_{\mathrm{e}}}{\mathrm{e}^{-}}_{L}$
-The gauge symmetry specifies the form of the interaction: one term for each of the 3 generators of $\operatorname{SU}(2)$ - [note: here include interaction strength in current]

$$
j_{\mu}^{1}=g_{W} \bar{\chi}_{L} \gamma^{\mu} \frac{1}{2} \sigma_{1} \chi_{L} \quad j_{\mu}^{2}=g_{W} \bar{\chi}_{L} \gamma^{\mu} \frac{1}{2} \sigma_{2} \chi_{L} \quad j_{\mu}^{3}=g_{W} \bar{\chi}_{L} \gamma^{\mu} \frac{1}{2} \sigma_{3} \chi_{L}
$$

\star The charged current $\mathbf{W}^{+} / \mathbf{W}^{-}$interaction enters as a linear combinations of $\mathbf{W}_{1}, \mathbf{W}_{2}$
\star The $\mathbf{W}^{ \pm}$interaction terms

$$
W^{ \pm \mu}=\frac{1}{\sqrt{2}}\left(W_{1}^{\mu} \mp i W_{2}^{\mu}\right)
$$

$$
j_{ \pm}^{\mu}=\frac{g_{W}}{\sqrt{2}}\left(j_{1}^{\mu} \mp i j_{2}^{\mu}\right)=\frac{g_{W}}{\sqrt{2}} \bar{\chi}_{L} \gamma^{\mu} \frac{1}{2}\left(\sigma_{1} \mp i \sigma_{2}\right) \chi_{L}
$$

\star Express in terms of the weak isospin ladder operators $\sigma_{ \pm}=\frac{1}{2}\left(\sigma_{1} \pm i \sigma_{2}\right)$

$$
\left.j_{ \pm}^{\mu}=\frac{g_{W}}{\sqrt{2}} \bar{\chi}_{L} \gamma^{\mu} \sigma_{\mp} \chi_{L}\right\} \text { Origin of } \frac{1}{\sqrt{2}} \text { in Weak CC }
$$

\mathbf{W}^{+}

which can be understood in terms of the weak isospin doublet

Bars indicates adjoint spinors

$$
j_{+}^{\mu}=\frac{g_{W}}{\sqrt{2}} \bar{\chi}_{L} \gamma^{\mu} \sigma_{-} \chi_{L}=\frac{g_{W}}{\sqrt{2}}\left(\bar{v}_{L}, \overline{\mathrm{e}}_{L}\right) \gamma^{\mu}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\binom{v}{e}_{L}=\frac{g_{W}}{\sqrt{2}} \overline{\mathrm{e}}_{L} \gamma^{\mu} v_{L}=\frac{g_{W}}{\sqrt{2}} \overline{\mathrm{e}} \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) v
$$

* Similarly

\star However have an additional interaction due to W^{3}

NEUTRAL CURRENT INTERACTIONS!

Electroweak Unification

\star Tempting to identify the W^{3} as the Z
\star However this is not the case, have two physical neutral spin-1 gauge bosons, γ, Z and the W^{3} is a mixture of the two,

* Equivalently write the photon and Z in terms of the W^{3} and a new neutral spin-1 boson the B
\star The physical bosons (the Z and photon field, A) are:

$$
\begin{aligned}
& A_{\mu}=B_{\mu} \cos \theta_{W}+W_{\mu}^{3} \sin \theta_{W} \\
& Z_{\mu}=-B_{\mu} \sin \theta_{W}+W_{\mu}^{3} \cos \theta_{W}
\end{aligned}
$$

θ_{W} is the weak mixing angle
\star The new boson is associated with a new gauge symmetry similar to that of electromagnetism : $\mathrm{U}(1)_{\mathrm{Y}}$
\star The charge of this symmetry is called WEAK HYPERCHARGE Y

$$
Y=2 Q-2 I_{W}^{3}
$$

Q is the EM charge of a particle
l_{w}^{3} is the third comp. of weak isospin

-By convention the coupling to the \mathbf{B}_{μ} is $\frac{1}{2} g^{\prime} Y$

$$
\begin{array}{ll}
\mathrm{e}_{L}: Y=2(-1)-2\left(-\frac{1}{2}\right)=-1 & v_{L}: Y=-1 \\
\mathrm{e}_{R}: Y=2(-1)-2(0)=-2 & v_{R}: Y=0
\end{array}
$$

(this identification of hypercharge in terms of Q and I_{3} makes all of the following work out)
\star For this to work the coupling constants of the \mathbf{W}^{3}, \mathbf{B}, and photon must be related e.g. consider contributions involving the neutral interactions of electrons:

$$
\begin{array}{|l|l}
\hline \gamma & j_{\mu}^{e m}=e \bar{\psi} Q_{e} \gamma_{\mu} \psi=e \overline{\mathrm{e}}_{L} Q_{\mathrm{e}} \gamma_{\mu} \mathrm{e}_{L}+e \overline{\mathrm{e}}_{R} Q_{e} \gamma_{\mu} \mathrm{e}_{R} \\
\hline \mathrm{~W}^{3} & j_{\mu}^{W^{3}}=-\frac{g_{W}}{2} \overline{\mathrm{e}}_{L} \gamma_{\mu} \mathrm{e}_{L} \\
\hline \mathrm{~B} & j_{\mu}^{Y}=\frac{g^{\prime}}{2} \bar{\psi} Y_{e} \gamma_{\mu} \psi=\frac{g^{\prime}}{2} \overline{\mathrm{e}}_{L} Y_{\mathrm{e}_{L}} \gamma_{\mu} \mathrm{e}_{L}+\frac{g^{\prime}}{2} \overline{\mathrm{e}}_{R} Y_{\mathrm{e}_{R}} \gamma_{\mu} \mathrm{e}_{R}
\end{array}
$$

\star The relation $A_{\mu}=B_{\mu} \cos \theta_{W}+W_{\mu}^{3} \sin \theta_{W} \quad$ is equivalent to requiring

$$
j_{\mu}^{e m}=j_{\mu}^{Y} \cos \theta_{W}+j_{\mu}^{W^{3}} \sin \theta_{W}
$$

-Writing this in full:

$$
e \overline{\mathrm{e}}_{L} Q_{\mathrm{e}} \gamma_{\mu} \mathrm{e}_{L}+e \overline{\mathrm{e}}_{R} Q_{e} \gamma_{\mu} \mathrm{e}_{R}=\frac{1}{2} g^{\prime} \cos \theta_{W}\left[\overline{\mathrm{e}}_{L} Y_{\mathrm{e}_{L}} \gamma_{\mu} \mathrm{e}_{L}+\overline{\mathrm{e}}_{R} Y_{\mathrm{e}_{R}} \gamma_{\mu} \mathrm{e}_{R}\right]-\frac{1}{2} g_{W} \sin \theta_{W}\left[\overline{\mathrm{e}}_{L} \gamma_{\mu} e_{L}\right]
$$

$$
-e \overline{\mathrm{e}}_{L} \gamma_{\mu} \mathrm{e}_{L}-e \overline{\mathrm{e}}_{R} \gamma_{\mu} \mathrm{e}_{R}=\frac{1}{2} g^{\prime} \cos \theta_{W}\left[-\overline{\mathrm{e}}_{L} \gamma_{\mu} \mathrm{e}_{L}-2 \overline{\mathrm{e}}_{R} \gamma_{\mu} \mathrm{e}_{R}\right]-\frac{1}{2} g_{W} \sin \theta_{W}\left[\overline{\mathrm{e}}_{L} \gamma_{\mu} e_{L}\right]
$$

$$
\text { which works if: } \quad e=g_{W} \sin \theta_{W}=g^{\prime} \cos \theta_{W}
$$

\star Couplings of electromagnetism, the weak interaction and the interaction of the $\mathrm{U}(1)_{\mathrm{Y}}$ symmetry are therefore related.

The Z Boson

* In this model we can now derive the couplings of the \mathbf{Z} Boson

$$
\begin{gathered}
Z_{\mu}=-B_{\mu} \sin \theta_{W}+W_{\mu}^{3} \cos \theta_{W} \\
j_{\mu}^{Z}=-\frac{1}{2} g^{\prime} \sin \theta_{W}\left[\overline{\mathrm{e}}_{L} Y_{\mathrm{e}_{L}} \gamma_{\mu} \mathrm{e}_{L}+\overline{\mathrm{e}}_{R} Y_{\mathrm{e}_{R}} \gamma_{\mu} \mathrm{e}_{R}\right]-\frac{1}{2} g_{W} \cos \theta_{W}\left[\overline{\mathrm{e}}_{L} \gamma_{\mu} e_{L}\right]
\end{gathered}
$$

-Writing this in terms of weak isospin and charge:

$$
j_{\mu}^{Z}=-\frac{1}{2} g^{\prime} \sin \theta_{W}\left[\overline{\mathrm{e}}_{L}\left(2 Q-2 I_{W}^{3}\right) \gamma_{\mu} \mathrm{e}_{L}+\overline{\mathrm{e}}_{R}(2 Q) \gamma_{\mu} \mathrm{e}_{R}\right]+I_{W}^{3} g_{W} \cos \theta_{W}\left[\overline{\mathrm{e}}_{L} \gamma_{\mu} e_{L}\right]
$$

For RH chiral states $I_{3}=0$

- Gathering up the terms for LH and RH chiral states:

$$
j_{\mu}^{Z}=\left[g^{\prime} I_{W}^{3} \sin \theta_{W}-g^{\prime} Q \sin \theta_{W}+g_{W} I_{W}^{3} \cos \theta_{W}\right] \overline{\mathrm{e}}_{L} \gamma_{\mu} \mathrm{e}_{L}-\left[g^{\prime} Q \sin \theta_{W}\right] \overline{\mathrm{e}}_{R} \gamma_{\mu} e_{R}
$$

-Using: $\quad e=g_{W} \sin \theta_{W}=g^{\prime} \cos \theta_{W} \quad$ gives

$$
\begin{array}{r}
j_{\mu}^{Z}=\left[g^{\prime} \frac{\left(I_{W}^{3}-Q \sin ^{2} \theta_{W}\right)}{\sin \theta_{W}}\right] \overline{\mathrm{e}}_{L} \gamma_{\mu} \mathrm{e}_{L}-\left[g^{\prime} \frac{Q \sin ^{2} \theta_{W}}{\sin \theta_{W}}\right] \overline{\mathrm{e}}_{R} \gamma_{\mu} e_{R} \\
j_{\mu}^{Z}=g_{Z}\left(I_{W}^{3}-Q \sin ^{2} \theta_{W}\right)\left[\overline{\mathrm{e}}_{L} \gamma_{\mu} \mathrm{e}_{L}\right]-g_{Z} Q \sin ^{2} \theta_{W}\left[\overline{\mathrm{e}}_{R} \gamma_{\mu} e_{R}\right] \\
\text { with } e=g_{Z} \cos \theta_{W} \sin \theta_{W} \quad \text { i.e. } g_{Z}=\frac{g_{W}}{\cos \theta_{W}}
\end{array}
$$

\star Unlike for the Charged Current Weak interaction (W) the Z Boson couples to both LH and RH chiral components, but not equally...

$$
\begin{aligned}
j_{\mu}^{Z} & =g_{Z}\left(I_{W}^{3}-Q \sin ^{2} \theta_{W}\right)\left[\overline{\mathrm{e}}_{L} \gamma_{\mu} \mathrm{e}_{L}\right]-g_{Z} Q \sin ^{2} \theta_{W}\left[\overline{\mathrm{e}}_{R} \gamma_{\mu} e_{R}\right] \\
& =g_{Z} c_{L}\left[\overline{\mathrm{e}}_{L} \gamma_{\mu} \mathrm{e}_{L}\right]+g_{Z} c_{R}\left[\overline{\mathrm{e}}_{R} \gamma_{\mu} e_{R}\right]
\end{aligned}
$$

B_{μ} part of Z couples equally to LH and RH components

* Use projection operators to obtain vector and axial vector couplings

$$
\begin{gathered}
\bar{u}_{L} \gamma_{\mu} u_{L}=\bar{u} \gamma_{\mu} \frac{1}{2}\left(1-\gamma_{5}\right) u \quad \bar{u}_{R} \gamma_{\mu} u_{R}=\bar{u} \gamma_{\mu} \frac{1}{2}\left(1+\gamma_{5}\right) u \\
\left.j_{\mu}^{Z}=g_{Z} \bar{u} \gamma_{\mu}\left[c_{L} \frac{1}{2}\left(1-\gamma_{5}\right)+c_{R} \frac{1}{2}\left(1+\gamma_{5}\right)\right)\right] u
\end{gathered}
$$

$$
\left.j_{\mu}^{Z}=\frac{g_{Z}}{2} \bar{u} \gamma_{\mu}\left[\left(c_{L}+c_{R}\right)+\left(c_{R}-c_{L}\right) \gamma_{5}\right)\right] u
$$

\star Which in terms of \mathbf{V} and \mathbf{A} components gives: $\quad j_{\mu}^{Z}=\frac{g_{Z}}{2} \bar{u} \gamma_{\mu}\left[c_{V}-c_{A} \gamma_{5}\right] u$
with $c_{V}=c_{L}+c_{R}=I_{W}^{3}-2 Q \sin ^{2} \theta_{W}$

$$
c_{A}=c_{L}-c_{R}=I_{W}^{3}
$$

* Hence the vertex factor for the Z boson is:

$$
-i g_{Z} \frac{1}{2} \gamma_{\mu}\left[c_{V}-c_{A} \gamma_{5}\right]
$$

\star Using the experimentally determined value of the weak mixing angle: $\sin ^{2} \theta_{W} \approx 0.23$

Fermion	Q	$L^{I_{W}^{3}} R^{1}$		c_{L}	C_{R}	c_{V}	c_{A}
v_{e}, v_{μ}, v_{τ}	0	$+\frac{1}{2}$	0	$+\frac{1}{2}$	0	$+\frac{1}{2}$	$+\frac{1}{2}$
e^{-}, μ^{-}, τ^{-}	-1	$-\frac{1}{2}$	0	-0.27	0.23	-0.04	$-\frac{1}{2}$
u, c, t	$+\frac{2}{3}$	$+\frac{1}{2}$	0	0.35	-0.15	+0.19	$+\frac{1}{2}$
d, s, b	$-\frac{1}{3}$	$-\frac{1}{2}$	0	-0.42	0.08	-0.35	$-\frac{1}{2}$

Z Boson Decay: Γ_{z}

ฝ In W-boson decay only had to consider one helicity combination of (assuming we can neglect final state masses: helicity states = chiral states)

W-boson couples:
 to LH particles
 and RH anti-particles

* But Z-boson couples to LH and RH particles (with different strengths)

ฝ Need to consider only two helicity (or more correctly chiral) combinations:

This can be seen by considering either of the combinations which give zero
e.g. $\quad \bar{u}_{R} \gamma^{\mu}\left(c_{V}+c_{A} \gamma_{5}\right) v_{R}=u^{\dagger} \frac{1}{2}\left(1+\gamma^{5}\right) \gamma^{0} \gamma^{\mu}\left(c_{V}+c_{A} \gamma^{5}\right) \frac{1}{2}\left(1-\gamma^{5}\right) v$

$$
\begin{aligned}
& =\frac{1}{4} u^{\dagger} \gamma^{0}\left(1-\gamma^{5}\right) \gamma^{\mu}\left(1-\gamma^{5}\right)\left(c_{V}+c_{A} \gamma^{5}\right) v \\
& =\frac{1}{4} \bar{u} \gamma^{\mu}\left(1+\gamma^{5}\right)\left(1-\gamma^{5}\right)\left(c_{V}+c_{A} \gamma_{5}\right) v=0
\end{aligned}
$$

\star In terms of left and right-handed combinations need to calculate:

* For unpolarized Z bosons: (Question 26)

$$
\begin{aligned}
& \left.\qquad\left.\langle | M_{f i}\right|^{2}\right\rangle=\frac{1}{3}\left[2 c_{L}^{2} g_{Z}^{2} m_{Z}^{2}+2 c_{R}^{2} g_{Z}^{2} m_{Z}^{2}\right]=\frac{2}{3} g_{Z}^{2} m_{Z}^{2}\left(c_{L}^{2}+c_{R}^{2}\right) \\
& \text { average over polarization }
\end{aligned}
$$

\star Using $\quad c_{V}^{2}+c_{A}^{2}=2\left(c_{L}^{2}+c_{R}^{2}\right) \quad$ and $\quad \frac{\mathrm{d} \Gamma}{\mathrm{d} \Omega}=\frac{\left|p^{*}\right|}{32 \pi^{2} m_{W}^{2}}|M|^{2}$

$$
\Gamma\left(Z \rightarrow e^{+} e^{-}\right)=\frac{g_{Z}^{2} m_{Z}}{48 \pi}\left(c_{V}^{2}+c_{A}^{2}\right)
$$

Z Branching Ratios

* (Neglecting fermion masses) obtain the same expression for the other decays

$$
\Gamma(Z \rightarrow f \bar{f})=\frac{g_{Z}^{2} m_{Z}}{48 \pi}\left(c_{V}^{2}+c_{A}^{2}\right)
$$

- Using values for c_{v} and c_{A} on page 471 obtain:

$$
\begin{aligned}
& \operatorname{Br}\left(Z \rightarrow e^{+} e^{-}\right)=\operatorname{Br}\left(Z \rightarrow \mu^{+} \mu^{-}\right)=\operatorname{Br}\left(Z \rightarrow \tau^{+} \tau^{-}\right) \approx 3.5 \% \\
& \operatorname{Br}\left(Z \rightarrow v_{1} \bar{v}_{1}\right)=\operatorname{Br}\left(Z \rightarrow v_{2} \bar{v}_{2}\right)=\operatorname{Br}\left(Z \rightarrow v_{3} \bar{v}_{3}\right) \approx 6.9 \% \\
& \operatorname{Br}(Z \rightarrow d \bar{d})=\operatorname{Br}(Z \rightarrow s \bar{s})=\operatorname{Br}(Z \rightarrow b \bar{b}) \approx 15 \% \\
& \operatorname{Br}(Z \rightarrow u \bar{u})=\operatorname{Br}(Z \rightarrow c \bar{c}) \approx 12 \%
\end{aligned}
$$

-The Z Boson therefore predominantly decays to hadrons

$$
\operatorname{Br}(Z \rightarrow \text { hadrons }) \approx 69 \%
$$

-Also predict total decay rate (total width)

$$
\Gamma_{Z}=\sum_{i} \Gamma_{i}=2.5 \mathrm{GeV}
$$

Experiment:

$$
\Gamma_{Z}=2.4952 \pm 0.0023 \mathrm{GeV}
$$

Summary

\star The Standard Model interactions are mediated by spin-1 gauge bosons

* The form of the interactions are completely specified by the assuming an underlying local phase transformation \Rightarrow GAUGE INVARIANCE

$\mathrm{U}(1)_{\mathrm{em}}$	\Rightarrow QED
$\mathrm{SU}(2)_{\mathrm{L}}$	
$\mathrm{SU}(3)_{\mathrm{col}}$	\Rightarrow Charged Current Weak Interaction + W ${ }^{3}$
QCD	

* In order to "unify" the electromagnetic and weak interactions, introduced a new symmetry gauge symmetry : $\mathrm{U}(1)$ hypercharge

\star The physical Z boson and the photon are mixtures of the neutral W boson and B determined by the Weak Mixing angle

$$
\sin ^{2} \theta_{W} \approx 0.23
$$

* Have we really unified the EM and Weak interactions ? Well not really... -Started with two independent theories with coupling constants g_{W}, e -Ended up with coupling constants which are related but at the cost of introducing a new parameter in the Standard Model θ_{W} -Interactions not unified from any higher theoretical principle... but it works!

Appendix I : Photon Polarization

- For a free photon (i.e. $j^{\mu}=0$) equation (A7) becomes

$$
\begin{equation*}
\square^{2} A^{\mu}=0 \tag{B1}
\end{equation*}
$$

(Non-examinable)
(note have chosen a gauge where the Lorentz condition is satisfied)

* Equation (A8) has solutions (i.e. the wave-function for a free photon)

$$
A^{\mu}=\varepsilon^{\mu}(q) e^{-i q \cdot x}
$$

where ε^{μ} is the four-component polarization vector and q is the photon four-momentum

\[

\]

\star Hence equation (B1) describes a massless particle.

* But the solution has four components - might ask how it can describe a spin-1 particle which has three polarization states?
* But for (A8) to hold we must satisfy the Lorentz condition:

$$
0=\partial_{\mu} A^{\mu}=\partial_{\mu}\left(\varepsilon^{\mu} e^{-i q \cdot x}\right)=\varepsilon^{\mu} \partial_{v}\left(e^{-i q \cdot x}\right)=-i \varepsilon^{\mu} q_{\mu} e^{-i q \cdot x}
$$

Hence the Lorentz condition gives

$$
\begin{equation*}
q_{\mu} \varepsilon^{\mu}=0 \tag{B2}
\end{equation*}
$$

i.e. only 3 independent components.
\star However, in addition to the Lorentz condition still have the addional gauge freedom of $A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \Lambda \quad$ with (A8) $\square^{2} \Lambda=0$
-Choosing $\quad \Lambda=i a e^{-i q \cdot x} \quad$ which has $\quad \square^{2} \Lambda=q^{2} \Lambda=0$

$$
\begin{aligned}
A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \Lambda & =\varepsilon_{\mu} e^{-i q \cdot x}+i a \partial_{\mu} e^{-i q \cdot x} \\
& =\varepsilon_{\mu} e^{-i q \cdot x}+i a\left(-i q_{\mu}\right) e^{-i q \cdot x} \\
& =\left(\varepsilon_{\mu}+a q_{\mu}\right) e^{-i q \cdot x}
\end{aligned}
$$

\star Hence the electromagnetic field is left unchanged by

$$
\varepsilon_{\mu} \rightarrow \varepsilon_{\mu}^{\prime}=\varepsilon_{\mu}+a q_{\mu}
$$

\star Hence the two polarization vectors which differ by a mulitple of the photon four-momentum describe the same photon. Choose a such that the time-like component of ε_{μ} is zero, i.e. $\varepsilon_{0} \equiv 0$

* With this choice of gauge, which is known as the COULOMB GAUGE, the

Lorentz condition (B2) gives

$$
\begin{equation*}
\vec{\varepsilon} \cdot \vec{q}=0 \tag{B3}
\end{equation*}
$$

i.e. only 2 independent components, both transverse to the photons momentum
^ A massless photon has two transverse polarisation states. For a photon travelling in the z direction these can be expressed as the transversly polarized states:

$$
\varepsilon_{1}^{\mu}=(0,1,0,0) ; \quad \varepsilon_{2}^{\mu}=(0,0,1,0)
$$

« Alternatively take linear combinations to get the circularly polarized states

$$
\varepsilon_{-}^{\mu}=\frac{1}{\sqrt{2}}(0,1,-i, 0) ; \quad \varepsilon_{+}^{\mu}=-\frac{1}{\sqrt{2}}(0,1, i, 0)
$$

\star It can be shown that the ε_{+}state corresponds the state in which the photon spin is directed in the $+\mathbf{z}$ direction, i.e. $S_{z}=+1$

Appendix II : Massive Spin-1 particles

(Non-examinable)
-For a massless photon we had (before imposing the Lorentz condition)
we had from equation (A5)

$$
\square^{2} A^{\mu}-\partial^{\mu}\left(\partial_{v} A^{v}\right)=j^{\mu}
$$

\star The Klein-Gordon equation for a spin-0 particle of mass m is

$$
\left(\square^{2}+m^{2}\right) \phi=0
$$

suggestive that the appropriate equations for a massive spin-1 particle can be obtained by replacing $\square^{2} \rightarrow \square^{2}+m^{2}$
\star This is indeed the case, and from QFT it can be shown that for a massive spin 1 particle equation (A5) becomes

$$
\left(\square^{2}+m^{2}\right) B^{\mu}-\partial^{\mu}\left(\partial_{\nu} B^{v}\right)=j^{\mu}
$$

* Therefore a free particle must satisfy

$$
\begin{equation*}
\left(\square^{2}+m^{2}\right) B^{\mu}-\partial^{\mu}\left(\partial_{v} B^{v}\right)=0 \tag{B4}
\end{equation*}
$$

-Acting on equation (B4) with ∂_{v} gives

$$
\begin{align*}
\left(\square^{2}+m^{2}\right) \partial_{\mu} B^{\mu}-\partial_{\mu} \partial^{\mu}\left(\partial_{v} B^{v}\right) & =0 \\
\left(\square^{2}+m^{2}\right) \partial_{\mu} B^{\mu}-\square^{2}\left(\partial_{v} B^{v}\right) & =0 \\
m^{2} \partial_{\mu} B^{\mu} & =0 \tag{B5}
\end{align*}
$$

\star Hence, for a massive spin-1 particle, unavoidably have $\partial_{\mu} B^{\mu}=0$; note this is not a relation that reflects to choice of gauge.
-Equation (B4) becomes

$$
\begin{equation*}
\left(\square^{2}+m^{2}\right) B^{\mu}=0 \tag{B6}
\end{equation*}
$$

* For a free spin-1 particle with 4-momentum, p^{μ}, equation (B6) admits solutions

$$
B_{\mu}=\varepsilon_{\mu} e^{-i p \cdot x}
$$

\star Substituting into equation (B5) gives

$$
p_{\mu} \varepsilon^{\mu}=0
$$

\star The four degrees of freedom in ε^{μ} are reduced to three, but for a massive particle, equation (B6) does not allow a choice of gauge and we can not reduce the number of degrees of freedom any further.
\star Hence we need to find three orthogonal polarisation states satisfying

$$
\begin{equation*}
p_{\mu} \varepsilon^{\mu}=0 \tag{B7}
\end{equation*}
$$

\star For a particle travelling in the z direction, can still admit the circularly polarized states.

$$
\varepsilon_{-}^{\mu}=\frac{1}{\sqrt{2}}(0,1,-i, 0) ; \quad \varepsilon_{+}^{\mu}=-\frac{1}{\sqrt{2}}(0,1, i, 0)
$$

\star Writing the third state as

$$
\varepsilon_{L}^{\mu}=\frac{1}{\sqrt{\alpha^{2}+\beta^{2}}}(\alpha, 0,0, \beta)
$$

equation (B7) gives $\alpha E-\beta p_{z}=0$

$$
\Rightarrow \quad \varepsilon_{L}^{\mu}=\frac{1}{m}\left(p_{z}, 0,0, E\right)
$$

* This longitudinal polarisation state is only present for massive spin-1 particles, i.e. there is no analogous state for a free photon (although off-mass shell virtual photons can be longitudinally polarized - a fact that was alluded to on page 114).

