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Particle Physics Major Option

EXAMPLES SHEET 1

SPECIAL RELATIVITY

1. a) Draw the two leading-order Feynman diagrams for e+e− → e+e− involving single photon ex-
change, and write q, the 4-momentum of the exchanged virtual photon, in terms of the 4-momenta
of the initial and/or final state particles. By evaluating q2 in the centre of mass frame, or otherwise,
determine whether q is timelike (q2 > 0) or spacelike (q2 < 0) in each case.

b) The Mandelstam variables s, t, u in the scattering process a + b → 1 + 2 are defined in terms of
the particle 4-vectors as

s = (pa + pb)
2, t = (pa − p1)2, u = (pa − p2)2 .

Show that s+ t+ u = ma
2 +mb

2 +m1
2 +m2

2.

c) Show that
√
s is the total energy of the collision in the centre of mass frame.

d) At the HERA accelerator in Hamburg, 27.5 GeV electrons are brought into head-on collision with
820 GeV protons. Calculate the centre of mass energy,

√
s, of e−p collisions at HERA, and determine

the beam energy that would be needed to produce e−p collisions with this value of
√
s using electrons

incident on a stationary proton target.

e) Show that, in the laboratory frame with particle X at rest, the reaction ν + X → ` + Y can only
proceed if the incoming neutrino has an energy above a threshold given by

Eν >
(ml +mY )2 −m2

X

2mX

.

2. a) For a particle of four-momentum pµ = (E, px, py, pz), show that the scalar product

p2 = E2 − p2x − p2y − p2z
is Lorentz invariant by explicitly transforming the four components of pµ.

b) Use the Lorentz transformations to show that the volume element d3p/E in momentum space is
Lorentz invariant, i.e. that

dpxdpydpz
E

=
dp′xdp

′
ydp

′
z

E ′
.

3. In a 2-body decay, a→ 1 + 2, show that the three-momentum of the final state particles in the centre
of mass frame has magnitude

p∗ =
1

2ma

√
[m2

a − (m1 +m2)2] [m2
a − (m1 −m2)2] .
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TWO BODY DECAY

4. According to the hypothesis of SU(3) symmetry (i.e. uds flavour independence) of invariant matrix
elements, the two-body decay processes ρ→ ππ and K∗ → Kπ have invariant matrix elements of the
form

Mf i = Cpπ

where Cρ/CK∗ = 2/
√

3 and pπ is the final state centre of mass momentum. Show that the predicted
ratio of decay rates agrees with experiment to within about 15%.

[Use the result of Question 3 to obtain pπ. Take the π, ρ, K and K∗ meson masses to be 139, 770,
494 and 892 MeV respectively. The measured widths are Γ(ρ → ππ) = 153 ± 2 MeV and Γ(K∗ →
Kπ) = 51.3± 0.8 MeV.]

5. The π+ meson decays almost entirely via the two body decay process π+→µ+νµ, with an invariant
matrix element given by

|Mf i|2 = 2G2
Ff

2
πm

2
µ(m2

π −m2
µ)

where GF = 1.166 × 10−5 GeV−2 is the Fermi constant, and fπ is related to the size of the pion
wavefunction (the pion being a composite object).

a) Obtain a formula for the π+ → µ+νµ decay rate. Assuming fπ ∼ mπ, calculate the pion lifetime
in natural units and in seconds, and compare to measurement.

[mπ = 139.6 MeV, mµ = 105.7 MeV.]

b) By replacingmµ byme, show that the rate of π+ → e+νe decay is 1.28×10−4 times smaller than the
corresponding decay rate to muons. Show also that, on the basis of phase space alone (i.e. neglecting
the factor |Mf i|2), the decay rate to electrons would be expected to be greater than the rate to muons.

2



THE DIRAC EQUATION

6. Write down a simplified form of the Dirac equation for a spinor ψ(t) describing a particle of mass m
at rest. For the standard Pauli-Dirac representation of the γ matrices, obtain a differential equation
for each component ψi of the spinor ψ, and hence write down a general solution for the evolution of
ψ. Comment on your result and on its relation to the standard plane wave solutions involving u1(p),
u2(p), v1(p), v2(p).

7. a) For the standard Pauli-Dirac representation of the γ matrices, and for an arbitrary pair of spinors ψ
and φ with components ψi and φi, show that the current ψγµφ is given by

ψγ0φ = ψ∗1φ1 + ψ∗2φ2 + ψ∗3φ3 + ψ∗4φ4

ψγ1φ = ψ∗1φ4 + ψ∗2φ3 + ψ∗3φ2 + ψ∗4φ1

ψγ2φ = −i(ψ∗1φ4 − ψ∗2φ3 + ψ∗3φ2 − ψ∗4φ1)

ψγ3φ = ψ∗1φ3 − ψ∗2φ4 + ψ∗3φ1 − ψ∗4φ2

b) For a particle or antiparticle with four-momentum pµ = (E, px, py, pz), show that

u1γ
µu1 = u2γ

µu2 = v1γ
µv1 = v2γ

µv2 = 2pµ

and that
u1γ

µu2 = u2γ
µu1 = v1γ

µv2 = v2γ
µv1 = 0 .

c) Hence show that the current jµ = ψ(p)γµψ(p) corresponding to a general free particle spinor
ψ(p) = u(p)ei(p.r−Et) or antiparticle spinor ψ(p) = v(p)e−i(p.r−Et) is given by jµ = 2pµ. Write
down the particle density and flux represented by jµ.

8. a) For a particle with 4-momentum pµ = (E, p sin θ cosφ, p sin θ sinφ, p cos θ), show that the spinors
(1 + γ5)u1 and (1 + γ5)u2 are not in general proportional to u↑ but become so in the relativistic limit
E � m.

b) Define the terms helicity and chirality. How are chirality and helicity related to the spinors and
result described in part (a) ?

c) What would be the equivalent result to that described in (a) for the corresponding antiparticle
spinors (1 + γ5)v1 and (1 + γ5)v2 ?

9. a) Without resorting to an explicit representation of the Dirac gamma matrices, show that the matrix
γ5 ≡ iγ0γ1γ2γ3 has the following properties:

(γ5)2 = 1, γ5† = γ5, γ5γµ = −γµγ5 .

b) Show that the adjoint spinors ψL and ψR corresponding to the left-handed and right-handed com-
ponents ψL ≡ 1

2
(1− γ5)ψ and ψR ≡ 1

2
(1 + γ5)ψ are:

ψL = ψ 1
2
(1 + γ5)

ψR = ψ 1
2
(1− γ5) .

c) Show that ψLγ
µψR = ψRγ

µψL = 0, and that the current ψγµψ can be decomposed as

ψγµψ = ψLγ
µψL + ψRγ

µψR .
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ELECTRON-MUON ELASTIC SCATTERING

10. a) Show that the matrix element for e−µ− → e−µ− scattering via single photon exchange is

Mf i = − e2

(p1 − p3)2
gµν [u(p3)γ

µu(p1)] [u(p4)γ
νu(p2)]

where p1 and p3 are the initial and final e− four-momenta and p2 and p4 are the initial and final µ−

four-momenta.

b) Show that, for scattering in the centre of mass frame with incoming and outgoing e− four-momenta
pµ1 = (E1, 0, 0, p) and pµ3 = (E1, p sin θ, 0, p cos θ), the electron current for the various possible
electron spin combinations is

u↓(p3)γ
µu↓(p1) = 2(E1c, ps,−ips, pc)

u↑(p3)γ
µu↓(p1) = 2(ms, 0, 0, 0)

u↑(p3)γ
µu↑(p1) = 2(E1c, ps, ips, pc)

u↓(p3)γ
µu↑(p1) = −2(ms, 0, 0, 0)

where m is the electron mass and s ≡ sin θ/2, c ≡ cos θ/2.

c) Write down the incoming and outgoing muon 4-momenta p2 and p4, and the helicity eigenstate
spinors u↑(p2), u↓(p2), u↑(p4) and u↓(p4). [Take the muon mass to be M and the muon energy to be
E2 ]. By comparing the forms of the muon and electron spinors, explain how the muon currents

u↓(p4)γ
µu↓(p2) = 2(E2c,−ps,−ips,−pc)

u↑(p4)γ
µu↓(p2) = 2(Ms, 0, 0, 0)

u↑(p4)γ
µu↑(p2) = 2(E2c,−ps, ips,−pc)

u↓(p4)γ
µu↑(p2) = −2(Ms, 0, 0, 0)

can be written down without any further calculation.

d) Explain why some of the above currents vanish in the relativistic limit where the electron mass and
muon mass can be neglected. Sketch the spin configurations which are allowed in this limit.

e) Show that, in the relativistic limit, the matrix element squared |MLL|2 for the case where the in-
coming e− and incoming µ− are both left-handed is given by

|MLL|2 =
4e4s2

(p1 − p3)4

where s = (p1 + p2)
2. Why is the numerator of |MLL|2 independent of θ ?

f) Find a similar expression for the matrix element |MRL|2 for a right-handed incoming e− and a left-
handed incoming µ−, and explain why |MRL|2 vanishes when θ = π. Write down the corresponding
results for |MRR|2 and |MLR|2.

g) Show that, in the relativistic limit, the differential cross section for unpolarised e−µ− → e−µ−

scattering in the centre of mass frame is

dσ

dΩ
=

2α2

s
·

1 + 1
4
(1 + cos θ)2

(1− cos θ)2
.
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h) Show that the spin-averaged matrix element squared can be expressed in Lorentz-invariant form as

〈
|Mf i|2

〉
=

8e4

(p1 − p3)4
[(p1.p2)(p3.p4) + (p1.p4)(p2.p3)] ,

and that a Lorentz invariant form for the differential cross section is

dσ

dq2
=

2πα2

q4

[
1 +

(
1 +

q2

s

)2
]

where q2 = (p1 − p3)2.

The remainder of this question involves the derivation of a general expression for 〈|Mf i|2〉 for the case
of finite electron and muon masses, and is optional:

i) Show that the spin-averaged matrix element squared for unpolarised e−µ− → e−µ− scattering can
be written in the form 〈

|Mf i|2
〉

=
1

4

∑
spins

|Mf i|2 =
1

4

e4

(p1 − p3)4
LµνWµν

where the electron and muon tensors Lµν and W µν are given by

Lµν ≡
∑
spins

[u(p3)γ
µu(p1)] [u(p3)γ

νu(p1)]
∗

Wµν ≡
∑
spins

[u(p4)γµu(p2)] [u(p4)γνu(p2)]
∗

j) Using the electron currents from part b) above, show that the components of the electron tensor Lµν

are 
L00 L01 L02 L03

L10 L11 L12 L13

L20 L21 L22 L23

L30 L31 L32 L33

 = 8


E2

1c
2 +m2s2 E1psc 0 E1pc

2

E1psc p2s2 0 p2sc
0 0 p2s2 0

E1pc
2 p2sc 0 p2c2

 ,

and hence verify that Lµν has the Lorentz invariant form

Lµν = 4
[
pµ1p

ν
3 + pµ3p

ν
1 + gµν

(
m2 − p1.p3

)]
.

k) Write down the corresponding expression for W µν and hence show that

〈|Mf i|2〉 =
8e4

(p1 − p3)4
[
(p1.p2)(p3.p4) + (p1.p4)(p2.p3)− (p1.p3)M

2 − (p2.p4)m
2 + 2m2M2

]
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NUMERICAL ANSWERS

1. d)
√
s = 300 GeV; E = 48000 GeV

4. Γ(ρ→ ππ)/Γ(K∗ → Kπ) = 3.46; expt = 2.98

5. a) τπ = 3.0× 1016 GeV−1 = 1.97× 10−8 s; expt = 2.6× 10−8 s

b) from phase space alone: Γ(π+ → e+νe)/Γ(π+ → µ+νµ) = 2.34
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