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EXAMPLES SHEET 3

NEUTRINO OSCILLATIONS

21. In the Daya Bay experiment (arXiv:1203.1669 and arXiv:1310.6732) electron antineu-

trinos from six nuclear reactors were observed in six detectors in three experimental halls, some

≈ 0.5 km and some ≈ 1.5 km distant from the reactors. The nuclear reactors emit electron antineu-

trinos of mean energy E ≈ 3MeV, and the detectors can resolve their energy to within a few percent.

a) Show that neutrino oscillations associated with the (solar) mass-squared difference |∆m2
12| ≈

7× 10−5 eV2 can be neglected for the Daya Bay experiment, and that

P (νe → νe) ≈ 1− sin2 2θ13 sin
2 ∆23

where

∆23 ≡
∆m2

23L

4E
.

b) In the limit |∆m2
23| ≫ (E/L), explain why a given measurement, P , of the survival probability

P (νe → νe) determines the neutrino mixing to be sin2 2θ13 = 2(1− P ).

c) In the limit |∆m2
23| ≪ (E/L), show that a given measurement, P , of the survival probability

P (νe → νe) determines the neutrino mixing to be sin2 2θ13 ∝ 1/(∆m2
23)

2, with constant of propor-

tionality (1− P )(4E/L)2.

d) The third experimental hall is a (weighted) distance of 1.63 km from the reactor complex. A detec-

tor here sees a fractional deficit in the number of electron antineutrinos of 0.071±0.010, compared to

that expected from the neutrino fluxes of the reactors. Place a lower bound on the value of sin2 2θ13.

The deficit is observed to monotonically decrease for neutrinos of energy greater than 4MeV average.

What bound does this place on ∆m2
23?

e) The plot below shows the ratio of the number of observed to number of expected electron antineu-

trinos, as a function of the effective detector-reactor distance Leff over the observed neutrino energies

Eν . It comprises data from all the detectors in the three experimental halls. Estimate values for

sin2 2θ13 and ∆m2
23.
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f) Sketch your results of parts (d) and (e) on a plot of the values of sin2 2θ13 and ∆m2
23, as fitted to the

data by the Daya Bay collaboration.
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22. a) It was shown in the lectures (see Equation (14) of Handout 12) that a general expression for the

probability that an initial νe oscillates into a νµ is

P (νe → νµ) = 2
∑

i<j

Re
(

UeiU
∗

µiU
∗

ejUµj

[

e−i(Ei−Ej)t − 1
])

.

Show that

P (νe → νµ) = −4
∑

i<j

Re(UeiU
∗

µiU
∗

ejUµj) sin
2 ∆ij + 2

∑

i<j

Im(UeiU
∗

µiU
∗

ejUµj) sin 2∆ij

where

∆ij ≡
(m2

i −m2
j)L

4E
≡

∆m2
ijL

4E
.

b) Use the unitarity of the PMNS matrix to show that

Im(Ue1U
∗

µ1U
∗

e3Uµ3) = −Im(Ue2U
∗

µ2U
∗

e3Uµ3) = −Im(Ue1U
∗

µ1U
∗

e2Uµ2) ≡ −J, say .

c) Hence show that

P (νe → νµ) = −4
∑

i<j

Re(UeiU
∗

µiU
∗

ejUµj) sin
2 ∆ij + 8J sin∆12 sin∆13 sin∆23

[You may wish to use the trigonometric identity

sinA+ sinB − sin(A+ B) = 4 sin
A

2
sin

B

2
sin

A+ B

2
. ]

d) The standard parameterisation of the PMNS matrix is





Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



 =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13





where cij ≡ cos θij and sij ≡ sin θij . Show that, in this parameterisation,

J =
1

8
cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 sin δ

and find the maximum possible value of |J | given the present experimental knowledge of the mixing

angles θ12, θ23 and θ13.

e) The conversion probabilities for antineutrinos are obtained by replacing U by U∗. Show that

P (νe → νµ)− P (νe → νµ) = 16J sin∆12 sin∆13 sin∆23 .

f) It is proposed to build a “neutrino factory” to search for evidence of CP violation in neutrino

oscillations; P (νe → νµ) 6= P (νe → νµ). A neutrino factory would produce an intense beam of

neutrinos with typical energy 10GeV. Roughly how far away should a neutrino detector be positioned

to optimise the chances of observing CP violation, and how large an effect might be expected ?
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CP VIOLATION AND THE CKM MATRIX

23. a) Draw Feynman diagrams for the decays K0 → π+π− and K0 → π+π−, and for the decays K0 →
π0π0 and K0 → π0π0.

b) Draw Feynman diagrams for the decays K0 → π−e+νe and K0 → π+e−νe, and explain why the

decays K0 → π−e+νe and K0 → π+e−νe cannot occur.

c) How does the decay rate for each of the above decays depend on the Cabibbo angle θC ?

24. In the CPLEAR experiment at CERN, neutral kaons are produced in low energy proton-antiproton

collisions via the channels pp → K+π−K0 and pp → K−π+K0. The strangeness of the initial K0 or

K0 is tagged by the charge of the accompanying K+ or K−, and the K0 or K0 is subsequently detected

via decays into the semileptonic final states π−e+νe and π+e−νe.

a) Draw Feynman diagrams for the reactions pp → K+π−K0 and pp → K−π+K0, and explain why

the reactions pp → K+π−K0 and pp → K−π+K0 cannot occur.

b) Show that, for a system which is initially in a pure K0 state, the decay rates R+ and R− to the

semileptonic final states π−e+νe and π+e−νe depend on the proper decay time t as

R+ ≡ Γ(K0
t=0 → π−e+νe) = Nπeν

1
4

[

e−ΓSt + e−ΓLt + 2e−(ΓS+ΓL)t/2 cos∆mt
]

R− ≡ Γ(K0
t=0 → π+e−νe) ≈ Nπeν

1
4
[1− 4Reǫ]

[

e−ΓSt + e−ΓLt − 2e−(ΓS+ΓL)t/2 cos∆mt
]

where ΓS = 1/τS , ΓL = 1/τL, ∆m = mL−mS, ǫ is the CP violation parameter, and Nπeν is an overall

normalisation constant. Show that the corresponding expressions for a system which is initially in a

pure K0 state are

R̄+ ≡ Γ(K0
t=0 → π−e+νe) ≈ Nπeν

1
4
[1 + 4Reǫ]

[

e−ΓSt + e−ΓLt − 2e−(ΓS+ΓL)t/2 cos∆mt
]

R̄− ≡ Γ(K0
t=0 → π+e−νe) = Nπeν

1
4

[

e−ΓSt + e−ΓLt + 2e−(ΓS+ΓL)t/2 cos∆mt
]

.

c) The figure overleaf shows a measurement from the CPLEAR experiment of the asymmetry

A∆m ≡
(R+ +R−)− (R+ +R−)

(R+ +R−) + (R+ +R−)

as a function of the proper decay time τ = t (plotted in units of the KS lifetime τS = 0.9 × 10−10 s).

Show that A∆m is given by

A∆m =
2 cos (∆mt) e−(ΓS+ΓL)t/2

e−ΓSt + e−ΓLt

and obtain an estimate of the mass difference ∆m.

d) Show that the time-reversal asymmetry

AT ≡
Γ(K0

t=0 → K0)− Γ(K0
t=0 → K0)

Γ(K0
t=0 → K0) + Γ(K0

t=0 → K0)

is independent of the decay time t and that

AT ≈ 4Re(ǫ) = 4|ǫ| cosφ .

4



we obtain �m = (0:5274 � 0:0029

stat:

) � 10

10

~=s. The correlation coe�cient

between �m and Re(x) is 0:068, and the value and the error of �m do not

change by �xing the value of Re(x) to zero. The asymmetry A

�m

is plotted in

Fig. 3, using the value of �m found by the �t, together with the data points

corrected for f

b

(� ).

Fig. 3. The asymmetry A

�m

versus the decay time (in unit of �

S

). The solid line

represents the result of the �t.

Table 1

Systematic errors

Source of Known �(�m)

systematic error precision [10

10

~=s]

background level �10% �0:0004

background asymmetry �1:0% �0:0001

decay time resolution �10% �0:0001

� correction �2:5% �0:0001

�

S

precision [4] �0:0012 � 10

�10

s �0:0001

total �0:0005

The systematic errors of the measurement are listed in Table 1. The main

source of systematic uncertainty arises from the Monte Carlo estimation of
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25. a) Draw the Feynman (box) diagrams responsible for K0−K0, D0−D
0
, B0

d−Bd
0 and B0

s−Bs
0 mixing.

[The K0, D0, B0
d and B0

s mesons have quark content ds, cu, db and sb, respectively.]

b) The mass difference ∆m between the mass eigenstates resulting from mixing in neutral meson

systems is proportional to the magnitude of the matrix element derived from the box diagrams: ∆m ∝
|Mf i|. For K0 − K0 mixing, for example, the box diagrams involving virtual quarks of flavour q and

q′, with masses mq and mq′ , lead to the prediction

∆mK ≈
G2

F

3π2
f 2
K mK

∣

∣VqdV
∗

qsVq′dV
∗

q′s

∣

∣mqmq′

where fK is a constant and the Vij are CKM matrix elements. Show that the dominant contribution

to ∆mK comes from the box diagram containing two virtual charm quarks. Estimate ∆mK and

compare with experiment. [Take fK = 100MeV.]

c) Show that the dominant contributions to D0−D
0

and B0−B0 mixing come from the box diagrams

containing two virtual strange quarks and two virtual top quarks, respectively. Obtain estimates of

∆mD and ∆mB. [Take fK = fD = fB]. Explain why D0−D
0

mixing has not been (and is unlikely to

be) observed. [Hint: convert ∆mD to a time and compare with the measured D0 lifetime of 0.41 ps.]
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NUMERICAL ANSWERS

21. d) sin2 θ13 > 0.051 at 97.5% C.L., |∆m2
23| < 3.0 × 10−3 eV2; e) sin2 θ13 = 0.09, |∆m2

23| =
2.6× 10−3 eV2

22. d) |J |max = 0.053; f) about 5000 km, |∆P |max ≈ 0.04

25. b) ∆mK ∼ 2× 10−12 MeV;

c) ∆mD ∼ 10−12 MeV, ∆mBd
∼ 10−9 MeV, ∆mBs

∼ 10−8 MeV
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