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Profiling & Systematics as part of statistical analysis

• A HEP analysis requires close integration of ‘physics concepts’ 
and ‘statistical concepts’
1. Design event selection “physics”

• Use simulated samples of signal, background to aid selection process 
(cuts, BDT, NN etc)

2. Analyze (‘fit’) data in selection “statistics”
• Measurement with statistical error, limit based on statistical uncertainty

3. Make inventory of systematic uncertainties “physics”
• Generally, any effect that isn’t measured constrained from your own measurement

4. Finalize result ‘including systematics’ “statistics”
• Variety of (empirical/fundamental) approaches to do this

5. Interpretation “physics”
• Better measurement, discovery etc, find mistake/sub-optimality in procedure

• Focus of this course: steps 3 and 4.
– Practical problem: ‘physics notion’ of systematic uncertainties does not map 

1-1 to a statistical procedure. Many procedures exist, some ad-hoc, some 
rigorous (from the statistical p.o.v.) 
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Profiling & Systematics as part of statistical data analysis
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Outline of this course

• Outline of this course
1. What are systematic uncertainties?

2. The likelihood function as basis for statistical inference
3. Incorporating systematic uncertainties in probability models

4. Dealing with nuisance parameters in statistical inference

5. Modeling shape systematics: template morphing

6. Tools for modelling building

7. Diagnostics I: Fit stability, understanding how minimizers work 

8. Diagnostics II: Result diagnostics, choice of nuisance parameters

9. Summary
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What are systematic uncertainties?

• Concept & definitions of ‘systematic uncertainties’ originates from 
physics, not from fundamental statistical methodology.

– E.g. Glen Cowans (excellent) 198pp book “statistical data analysis” 
does not discuss systematic uncertainties at all

• A common definition is
– “Systematic uncertainties are all uncertainties that are 

not directly due to the statistics of the data”

• But the notion of ‘the data’ is a key source of ambiguity: 
– does it include control measurements?

– does it include measurements that were used to perform basic 
(energy scale) calibrations?
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Systematic uncertainty as a hidden measurement

• Consider 2 examples of measurements with systematic uncertainties

• Example 1: Measuring length of an object with a ruler
– ‘Ruler calibration uncertainty’ is systematic uncertainty on length measurement

• Example 2: Counting measurement a signal 
in the presence of background

– Measurement has (Poisson) statistical uncertainty.
– Uncertainty on rate of background process introduces a systematic uncertainty 

on estimate of signal rate

• Is the ‘systematic uncertainty’ just a ‘hidden measurement’?
– Ex 1: Ruler calibration could depend on temperature and uncertainty on current 

temperature could be dominant component of uncertainty
– Ex 2: Background rate could be measured by a control sample

Wouter Verkerke, NIKHEF



The simulation workflow and origin of uncertainties

Wouter Verkerke, NIKHEF
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Sources of systematic uncertainty in HEP

• Detector-simulation related uncertainty
– Calibrations (electron, jet energy scale)

– Efficiencies (particle ID, reconstruction)
– Resolutions (jet energy, muon momentum)

• Theoretical uncertainties
– Factorization/Normalization scale of MC generators

– Choice of MC generator (ME and/or PS, e.g. Herwig vs Pythia) 

• Monte Carlo Statistical uncertainties
– Statistical uncertainty of simulated samples 
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Typical specifications of systematic uncertainties

• Detector-simulation related
– “The Jet Energy scale uncertainty is 5%”
– “The b-tagging efficiency uncertainty is 20% for jets with pT<40”

• Theory related
– “Vary the factorization scale by a factor 0.5 and 2.0 and consider the difference the 

systematic uncertainty”
– “Evaluate the effect of using Herwig and Pythia and consider the difference the 

systematic uncertainty”

• MC related
– Usually left unspecified – but quite clearly defined as a Poisson distribution with the 

‘observed number of simulated events’ as mean. 
– But if MC events are weighted, it gets a bit more complicated.

• Note that specifications are often phrased as a prescription to be 
executed on the estimation procedure of the physics quantity of 
interest (‘vary and rerun…’) or can be easily cast this way.
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Evaluating the effect of systematic uncertainties

• Often measurements are treated as a ‘black-box’ 
(e.g. as if it were a physical device that reports the measurement) 

• Inspires a ‘naive’ approach to systematic uncertainty evaluation: 
simply propagate ‘external systematic uncertainties’ into result

– Evaluate nominal measurement (through unspecified procedure)

– Evaluate measurement at ‘±1 sigma’ of some systematic uncertainty

– Calculate systematic uncertainty on measurement through numeric error 
propagation

– Repeat as needed for all systematic uncertainties, 
add in quadrature for total systematic uncertainty.
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µnom = µ̂

µup = µ̂(syst −up)
µdown = µ̂(syst − down)

σ µ (syst) = µup −µdown
"# $% / 2

µmeas = µnom ±σ (JES)±...



Pros and cons of the ‘naïve’ approach

• Pros
– It’s easy to do

– It results in a seemingly easy-to-interpret table of systematics

• Cons
– A maximum likelihood measurement is really nothing like a ‘device’

– Uncorrelated source of systematic uncertainty can have correlated effect on 
measurement à Completely ignored

– Magnitude of stated systematic uncertainty may be incompatible with 
measurement result à Completely ignored 

– It’s not based statistically rigorous procedures (i.e. evaluation of systematic 
uncertainties is completely detached from statistical procedure used to 
estimate physics quantity of interest)

• No calibrated probabilistic statements possible (95% C.L.)

• No known good procedure for limit setting

• So what should we do with systematic uncertainties in statistical 
inference?
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The goal of statistical inference: probabilistic statements

• (One-sided) confidence intervals (“limits”)

• Discovery of X

• Measurements

• Before we discuss systematic uncertainties – review how these 
techniques work without systematic uncertainties
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σ (X)<10 pb at 95%C.L.

σ (X) = X ±Y (stat)± Z(syst) pb

“Probability to obtain observed data or more extreme
under hypothesis that X doesn’t exist is less than 1.1�10-7



The statistical world

• Central concept in statistics is the ‘probability model’

• A probability model assigns a probability to each possible 
experimental outcome.

• Example: a HEP counting experiment
– Count number of ‘events’ in a fixed time interval à Poisson distribution

– Given the expected event count, the probability model is fully specified
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Probabilities vs conditional probabilities

• Note that probability models strictly give conditional probabilities
(with the condition being that the underlying hypothesis is true)

• Suppose we measure N=7 then can calculate

L(N=7|Hbkg)=2.2%       L(N=7|Hsig+bkg)=14.9%

• Data is more likely under sig+bkg hypothesis than bkg-only hypo

• Is this what we want to know? Or do we want to know L(Hs+b|N=7)?
Wouter Verkerke, NIKHEF

P(N )→ P(N |Hbkg ) P(N )→ P(N |Hsig+bkg )

Definition: 
P(data|hypo) is called 

the likelihood



Inverting the conditionality on probabilities

• This conditionality inversion relation is known as Bayes Theorem

• And choosing  A=data and B=theory

• Return to original question:

Do you L(7|Hb) and L(7|Hsb) provide you 
enough information to calculate P(Hb|7) and P(Hsb|7)

• No! à Need P(A) and P(B) à Need P(Hb), P(Hsb) and P(7)
Wouter Verkerke, NIKHEF

Essay “Essay Towards Solving a Problem in the Doctrine of 
Chances”  published in Philosophical Transactions of the 
Royal Society of London in 1764

Thomas Bayes (1702-61)

P(B|A) = P(A|B) × P(B)/P(A)

P(theo|data) = P(data|theo) × P(theo) / P(data)



Summary on statistical test with simple hypotheses

• So far we considered simplest possible experiment we can do: 
counting experiment

• For a set of 2 or more completely specified (i.e. simple) hypotheses 

• In principle, any potentially complex measurement (for Higgs, SUSY, 
top quarks) can ultimately take this a simple form.
But there is some ‘pre-work’ to get here – examining (multivariate) 
discriminating distributions à Now try to incorporate that 
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à Given probability models P(N|bkg), and P(N|sig) 
we can calculate P(Nobs|Hx) under either hypothesis

à With additional information on P(Hi) we can also calculate P(Hx|Nobs)



Discriminating observables & counting experiments

• HEP experimental data usually has many discriminating observables 
that carry information that can distinguish signal from background 
hypothesis

• In principle can use them all directly in an elaborate hypothesis test.
– But would need to formulate a model that describe the expected distribution of all 

of these à Complicated

– If expectations are uncertain (from simulation or theory) process of modeling 
becomes even more complex

• A pragmatic solution to reduce complexity is to split task in two
– Define empirical selection of events enriched in signal using one or more 

observable properties of the event (invariant masses, distributions, angles etc)

– Perform statistical test (hypothesis test, parameter estimation etc) on sample that 
reduced in size and in dimensionality of discriminating observables that are 
modeled

– Most extreme reduction of dimensionality is to zero à counting experiment 

Wouter Verkerke, NIKHEF



Discriminating observables & counting experiments

• Example 1 – Discrimination in selection stage only

s=0

s=5
s=10

s=15

Event selection: 
reduce sample size 
and dimensionality

Formulation of probability model of reduced sample:
Poisson(N|s+b)

Statistical inference:
L(15|5) = 1.5 10-4

NB1: All discriminating power in selection step, 
none in inference step. This is a design choice!

NB2: Selection must be tuned on a ‘figure of merit’
usually a simplified statistical inference test



Modeling discriminating observables

• Example 2 – Discrimination in inference stage

Event selection: 
reduce sample size 
and dimensionality

Formulation of probability model of reduced sample:
Nbkg*Uniform(x) +Nsig*Gaussian(x) 

Statistical inference:
L(data|hypo)=something

NB1: Most discrimination power in inference step. 
This is again design choice!

NB2: Optimal selection less critical

NB3: Correct description of selected sample
more complex



Modeling discriminating observables

• Example 2 – full dataset has one discriminating observable: x 

Event selection: 
reduce sample size 
and dimensionality

Formulation of probability model of reduced sample:
Nbkg*Uniform(x) +Nsig*Gaussian(x) 

Statistical inference:
L(data|hypo)=something

NB1: Most discrimination power in inference step. 
This is again design choice!

NB2: Optimal selection less critical

NB3: Correct description of selected sample
more complex

Q: Which strategy is better?

A: Depends on how ‘better’ is defined?

For hypothesis testing ‘discovery of a new article’

the ‘power’ of the test can be the same, but doesn’t need to be

Choice is real life largely dictated by practicalities

• How easy is it to formulate a description of the observables?

• How many observables are important?



PDFs with multiple process contributions 

• Analogous to the counting model Poisson(N|S+B), probability 
density models can describe the distribution of such hypothesis 
through simple addition

• Given a data sample D(x) of N 
independent identically distributed
observations  of x, the Likelihood is 
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f(x) = fsig Gaussian(x) + (1-fsig) Uniform(x)

If Gaussian(x) and Uniform(x)
are pdfs, then their sum is also
a pdf, provided the sum of the
coefficients is also 1

L( !x) = f (xi )
i=0...N
∏



PDFs with multiple process contributions 

• Note that the Likelihood L(x) of a probability density function f(x)
for a data sample D(x) with N entries only exploits the differential 
distribution in x, but not the event count N of the data

• In many cases the event count can also distinguish the S/B 
hypothesis (more events expected if signal is present). If so, 
the probability model for the event count can be explicitly included 
in the Likelihood (often called ‘extended likelihood’)

• In the common case of a signal and background, with a 
respective expected event S and B, 
one can reparameterize (fsig,Nexp) à (S,B)

Wouter Verkerke, NIKHEF

f(x) = fsig Gaussian(x) + (1-fsig) Uniform(x)

P(N) = Poisson(N | Nexp)

L(
!
x,N ) = f (xi | fsig )

i=0...N
∏ ⋅Poisson(N | Nexp )



Empirical probability models

• In case no description from first principles exists for a differential 
distribution, empirical or simulation-based models can be deployed

Wouter Verkerke, NIKHEF

Empirical models Simulation-based models

B(x) = a0+a1x+a2x2+a3x3… B(x) = histogram

Drawbacks: 
• Arbitrariness in parameterization,

e.g. which order to choose
for a polynomial

Drawbacks: 
• Quantization of model prediction in bins
• Poor modeling in regions 

with low simulation statistics



Working with Likelihood functions for distributions

• How do the statistical inference procedures change 
for Likelihoods describing distributions?

• Bayesian calculation of P(theo|data) they are exactly the same.
– Simply substitute counting model with binned distribution model 
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P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

P(Hs+b |
!
N ) =

Poisson
i
∏ (Ni | "si + "bi )P(Hs+b )

Poisson
i
∏ (Ni | "si + "bi )P(Hs+b )+ Poisson

i
∏ (Ni | "bi )P(Hb )

Simply fill in new Likelihood function
Calculation otherwise unchanged



Working with Likelihood functions for distributions

• Frequentist calculation of P(data|hypo) also unchanged, 
but question arises if P(data|hypo) is still relevant?

• L(N|H) is probability to obtain exactly the histogram observed.

• Is that what we want to know? Not really.. We are interested in 
probability to observe any ‘similar’ dataset to given dataset,
or in practice dataset ‘similar or more extreme’ that observed data

• Need a way to quantify ‘similarity’ or ‘extremity’ of observed data
Wouter Verkerke, NIKHEF

L(
!
N |Hb ) = Poisson(

i
∏ Ni | "bi )

L(
!
N |Hs+b ) = Poisson(

i
∏ Ni | "si + "bi )



Working with Likelihood functions for distributions

• Definition: a test statistic T(x) is any function of the data x

• We need a test statistic that will classify (‘order’) all possible 
observations in terms of ‘extremity’ (definition to be chosen by 
physicist)

• NB: For a counting measurement the count itself is already 
a useful test statistic for such an ordering (i.e. T(x) = x)

Wouter Verkerke, NIKHEF

Test statistic T(N)=Nobs orders observed
events count by estimated signal yield

Low N à low estimated signal
High N à large estimated signal



• Now make a measurement N=Nobs (example Nobs=7)

• Definition: p-value: 
probability to obtain the observed data, or more extreme
in future repeated identical experiments

– Example: p-value for background-only hypothesis

P-values for counting experiments

)23.0()0;( =+= ò
¥

obsN
b dNbNPoissonp

s=0

s=5
s=10

s=15



Ordering distributions by ‘signal-likeness’ aka ‘extremity’

• How to define ‘extremity’ if observed data is a distribution

Counting Histogram

Observation

Median expected
by hypothesis

Predicted distribution
of observables

Nobs=7

Nexp(s=0) = 5
Nexp(s=5) = 10

Which histogram is more ‘extreme’?



The Likelihood Ratio as a test statistic

• Given two hypothesis Hb and Hs+b the ratio of likelihoods
is a useful test statistic

• Intuitive picture: 

à If data is likely under Hb,                à If data is likely under Hs+b
L(N|Hb) is large,                                 L(N|Hs+b) is large,
L(N|Hs+b) is smaller                            L(N|Hb) is smaller 
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λ(
!
N ) = L(

!
N |Hs+b )

L(
!
N |Hb )

λ(
!
N ) = small

large
= small λ(

!
N ) = large

small
= large



Visualizing the Likelihood Ratio as ordering principle

• The Likelihood ratio as ordering principle

• Frequentist solution to ‘relevance of P(data|theory’) is to order all 
observed data samples using a (Likelihood Ratio) test statistic

– Probability to observe ‘similar data or more extreme’ then amounts to 
calculating ‘probability to observe test statistic λ(N) as large or larger than the 
observed test statistic λ(Nobs)

Wouter Verkerke, NIKHEF

L(N|Hs+b)=small
L(N|Hb)=large

L(N|Hs+b)=soso
L(N|Hb)=soso

L(N|Hs+b)=large
L(N|Hb)=small

λ(N)=0.0005 λ(N)=0.47 λ(N)=5000



A different Likelihood ratio for composite hypothesis testing

• On composite hypotheses, where both null and alternate 
hypothesis map to values of μ, we can define an alternative
likelihood-ratio test statistics that has better properties

• Advantage: distribution of new λμ has known asymptotic form

• Wilks theorem: distribution of –log(λμ) is asymptotically distribution 
as a χ2 with Nparam degrees of freedom*

*Some regularity conditions apply

• à Asymptotically, we can directly calculate p-value from λμobs

Wouter Verkerke, NIKHEF

λ(

N ) = L(


N |H0 )

L(

N |H1)

λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

‘simple hypothesis’ ‘composite hypothesis’ 

‘Best-fit value’

Hypothesis 
μ that is being 
tested



What does a χ2 distribution look like for n=1?

• Note that it for n=1, it does not peak at 1, but rather at 0…
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Composite hypothesis testing in the asymptotic regime

• For ‘histogram example’: what is p-value of null-hypothesis

− logµ

t0 = 34.77

t0 = −2 ln
L(data |µ = 0)
L(data | µ̂)

μ is best fit 
value of μ
^

‘likelihood of best fit’

‘likelihood assuming zero signal strength’

On signal-like data t0 is large

P-value = TMath::Prob(34.77,1) 
= 3.7x10-9

Wilks: f(λ|0) à χ2 distribution



Composite hypothesis testing in the asymptotic regime

• For ‘histogram example’: what is p-value of null-hypothesis

t0 = 34.77 t0 = 0.02

t0 = −2 ln
L(data |µ = 0)
L(data | µ̂)

μ is best fit 
value of μ
^

‘likelihood of best fit’

‘likelihood assuming zero signal strength’

On signal-like data t0 is large On background-like data t0 is small

P-value = TMath::Prob(34.77,1) 
= 3.7x10-9

P-value = TMath::Prob(0.02,1) 
= 0.88

Use
Wilks

Theorem



How quickly does f(λμ|μ) converge to its asymptotic form

• Pretty quickly –

Wouter Verkerke, NIKHEF

Here is an example of likelihood function
for 10-bin distribution with 200 events

Here is an example for event
counting at various s,b



From hypothesis testing to confidence intervals

• Next step for composite hypothesis is to go from p-values for a 
hypothesis defined by fixed value of μ to an interval statement on μ 

• Definition: A interval on μ at X% confidence level is defined such that 
the true of value of μ is contained X% of the time in the interval.

– Note that the output is not a probabilistic statement on the true s value 
– The true μ is fixed but unknown – each observation will result in an estimated 

interval [μ-,μ+]. X% of those intervals will contain the true value of μ
– Coverage = guarantee that probabilistic statements is true (i.e. repeated future 

experiments do reproduce results in X% of cases)

• Definition of confidence intervals does not make 
any assumption on shape of interval 

à Can choose one-sided intervals (‘limits’), 
two-sided intervals (‘measurements’),
or even disjoint intervals (‘complicated measurements’)
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Exact confidence intervals – the Neyman construction

• Simplest experiment: one measurement (x), one theory parameter (q)

• For each value of parameter θ, determine distribution in in observable 
x

Wouter Verkerke, NIKHEF
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How to construct a Neyman Confidence Interval

• Focus on a slice in θ

– For a 1-a% confidence Interval, define acceptance interval
that contains 100%-a% of the distribution

Wouter Verkerke, NIKHEF

observable x

pdf for observable x
given a parameter value θ0



How to construct a Neyman Confidence Interval

• Now make an acceptance interval in observable x
for each value of parameter θ

Wouter Verkerke, NIKHEF

observable x
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How to construct a Neyman Confidence Interval

• This makes the confidence belt
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observable x
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How to construct a Neyman Confidence Interval

• The confidence belt can constructed in advance of any 
measurement, it is a property of the model, not the data

• Given a measurement x0, a confidence interval [θ+,θ-] can be 
constructed as follows

• The interval [θ-,θ+] has a 68% probability to cover the true value

Wouter Verkerke, NIKHEF
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Confidence intervals using the Likelihood Ratio test statistic

• Neyman Construction on Poisson counting looks like ‘textbook’ belt. 
• In practice we’ll use the Likelihood Ratio test statistic to summarize the 

measurement of a (multivariate) distribution for the purpose of 
hypothesis testing.

• Procedure to construct belt with LR is  identical: 
obtain distribution of λ for every value of μ to construct confidence belt   

x=3.2

observable x

pa
ra

m
et

er
 μ

λμ(x,μ)

Likelihood Ratio λ

pa
ra

m
et

er
 μ

?



The asymptotic distribution of the likelihood ratio test statistic

• Given the likelihood ratio 

Q: What do we know about asymptotic distribution of λ(μ)? 

• A: Wilks theorem à Asymptotic form of  f(t|μ) is a χ2 distribution

f(tμ|μ) = c2(tμ,n)

• Note that f(tμ|μ) is independent of μ!
à Distribution of tμ is the same for every ‘horizontal slice’ of the belt

Wouter Verkerke, NIKHEF

tµ = −2 logλµ (x) = −2 log
L(x |µ)
L(x | µ̂)

Where 
μ is the hypothesis being tested and 
n is the number of parameters (here 1: μ )



Confidence intervals using the Likelihood Ratio test statistic

• Procedure to construct belt with LR is identical: 
obtain distribution of λ for every value of μ to construct belt   

x=3.2

observable x

pa
ra

m
et

er
 μ

tμ(x,μ)

Likelihood 
Ratio

pa
ra

m
et

er
 μ

Confidence 
belt now 
range in LR



What does the observed data look like with a LR?

• Note that while belt is (asymptotically) independent of parameter μ, 
observed quantity now is dependent of the assumed μ

x=3.2

observable x

pa
ra

m
et

er
 μ

tμ(x,μ)

Likelihood Ratio
pa

ra
m

et
er

 μ

Measurement = tμ(xobs,μ) 
is now a function of μ



Connection with likelihood ratio intervals

• If you assume the asymptotic distribution for tμ, 
– Then the confidence belt is exactly a box 

– And the constructed confidence interval can be simplified
to finding the range in μ where tμ=½×Z2

à This is exactly the MINOS error

Wouter Verkerke, NIKHEF
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FC interval with Wilks Theorem MINOS / Likelihood ratio interval
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Incorporating
systematic 
uncertainties in 
probability models3



So far we’ve only considered the ideal experiment

• The “only thing” you need to do (as an experimental physicist) is to 
formulate the likelihood function for your measurement

• For an ideal experiment, where signal and background are 
assumed to have perfectly known properties, this is trivial

• So far only considered a single parameter in the likelihood:
the physics parameter of interest, usually denoted as μ

Wouter Verkerke, NIKHEF

L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏



The imperfect experiment

• In realistic measurements many effect that we don’t control 
exactly influence measurements of parameter of interest

• How do you model these uncertainties in the likelihood? 

Wouter Verkerke, NIKHEF

L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏

Signal and background predictions
are affected by (systematic) uncertainties



Modeling systematic uncertainties in the likelihood

• What is a systematic uncertainty? It consists of
– 1: A set of one or more parameters of which the true value is unknown, 
– 2: A response model that describes the effect of those 

parameters on the measurement.
– 3: A distribution of possible values for the parameters
– In practice these (response) models are often only formulated implicitly, but 

modeling of systematic uncertainties in the likelihood requires an explicit 
model

• Example of ‘typical’ systematic uncertainty prescription 

“The Jet Energy Scale Uncertainty is 5%”

• Note that example does not meet definition standards above
– Specification specifies variance of the distribution unknown parameter, but not 

the distribution itself (is it Gaussian, Poisson, something else) 
– Response model left unspecified
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Formulating a response model

• Why does the statement 

“the JES uncertainty is X%” 

not a formulate a response model, while an additional statement

“If the JES is off by +X%, the energy of every jet 
in the event is increased by X%”

does constitute a response model?
• The first statement doesn’t specify any correlation between jets with different 

kinematics
– Can low pT jets be miscalibrated by -4% and high pT jets be calibrated by +5%?
– Or must all jets be miscalibrated by exactly the same amount?

• The former interpretation would require 2 (or more) model parameters to 
capture the effect of the miscalibration of the simulation, the latter only one.

• Once the response model is defined, the effect of a systematic uncertainty is 
deterministically described, up to an (a set of) unknown strength parameter(s).

Wouter Verkerke, NIKHEF



Formulating a response model

• Note that the construction of a response model for a systematic 
uncertainty is no different from choosing a model to describe your 
physics of interest

– You define a probability model that deterministically describes the 
consequences of the underlying hypothesis, up to set of (a priori) unknown 
model parameter

• Will (for now) assume that for our example measurement the 
example systematic uncertainty – the Jet Energy Scale – can be 
correctly described with a single parameter that coherently moves 
the calibration of all jets in the event.

– The correctness of such an assumption we’ll revisit later (but note that this is a 
physics argument)
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Modeling the strength parameter

• What do we know about distribution of the corresponding 
strength parameter?

– The sqrt(variance) of the distribution was specified to be 5%

• But a variance does not completely specify a distribution
– Does the JES measurement follow a Gaussian distribution?

– Does the JES measurement follow a Poisson distribution?
– Or, a ‘block-shaped’ distribution, or anything else?

• Not specified by “JES is 5%” prescription
– Often not a difficult issue as detector-related uncertainties, as these

since they are based on (calibration) measurements (and/or central limit 
theorem applies) à Gaussian or Poisson distribution

– For theory uncertainties this can be tricky, what distribution to assume for 
‘renormalization scale uncertainty’? Will come back to this later

Wouter Verkerke, NIKHEF



Formalizing systematic uncertainties

• The original systematic uncertainty prescription

• The formalized prescription for use in statistical analysis

Wouter Verkerke, NIKHEF

“the JES uncertainty is 5%” 

“There is a calibration parameter in the likelihood
of which the true value is unknown

The distribution of this parameter is a Gaussian
distribution with a 5% width

The effect of changing the calibration by 1%
is that energy of all jets in the event is
coherently increased by 1% ” 



Introducing uncertainties – a non-systematic example

• The original model (with fixed b)

• Now consider b to be uncertain

• The experimental data contains insufficient to constrain both
s and b à Need to add an additional measurement to constrain b

Wouter Verkerke, NIKHEF

s=0

s=5

s=10
s=15

L(N|s) à L(N|s,b)



The sideband measurement

• Suppose your data 
in reality looks like this è

Can estimate level of background in the ‘signal region’ from event 
count in a ‘control region’ elsewhere in phase space 

• Full likelihood of the measurement (‘simultaneous fit’)

LSR (s,b) = Poisson(NSR | s+ b)
LCR (b) = Poisson(NCR | !τ ⋅b)

NB: Define parameter ‘b’ to represents 
the amount of bkg is the SR. 

Scale factor τ accounts for difference 
in size between SR and CR

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

CR SR

“Background uncertainty constrained from the data”



Generalizing the concept of the sideband measurement

• Background uncertainty from sideband clearly clearly not a 
‘systematic uncertainty’

• Now consider scenario where b is not measured from a sideband, 
but is taken from MC simulation with an 8% cross-section 
‘systematic’ uncertainty

– We can model this in the same way, because the cross-section uncertainty is 
also (ultimately) the result of a measurement

Wouter Verkerke, NIKHEF

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)

‘Measured background rate by MC simulation’

‘Subsidiary measurement’
of background rate

Generalize: ‘sideband’ à ‘subsidiary measurement’



Modeling a detector calibration uncertainty

• Now consider a detector uncertainty, e.g. jet energy scale 
calibration, which can affect the analysis acceptance in a non-trivial 
way (unlike the cross-section example) 

L(N, !α | s,α) = Poisson(N | s+ !b(α / !α) ⋅2)) ⋅Gauss( !α |α,σα )

Signal rate (our parameter of interest)

Observed event count

Nominal background 
expectation from MC
(a constant), obtained
with a=a˜

Response function
for JES uncertainty
(a 1% JES change 

results in a 2% 
acceptance change)

“Subsidiary measurement”
Encodes ‘external knowledge’ 
on JES calibration

Nominal calibration
Assumed calibration

Uncertainty
on nominal
calibration
(here 5%)

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)



Modeling a detector calibration uncertainty

• Simplify expression by renormalizing “subsidiary measurement”

Wouter Verkerke, NIKHEF

L(N | s,α) = Poisson(N | s+ !b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Signal rate (our parameter of interest)

Observed event count

Nominal background 
expectation from MC
(a constant)

Response function
for normalized JES 

parameter
[a unit change in α 

– a 5% JES change –
still results in a 10% 
acceptance change]

“Normalized 
subsidiary measurement”

The scale of parameter
α is now chosen such that 
values ±1 corresponds to the 
nominal uncertainty
(in this example 5%)

Gauss( α |α,σα )



The response function as empirical model of full simulation

• Note that the response function is generally not linear, but can in 
principle always be determined by your full simulation chain

– But you cannot run your full simulation chain for any arbitrary ‘systematic 
uncertainty variation’ à Too much time consuming

– Typically, run full MC chain for nominal and ±1σ variation of systematic 
uncertainty, and approximate response for other values of NP with interpolation

– For example run at nominal JES and with JES shifted up and down by ±5%

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

α

b(
α)

-1 0 +1 0.9

1.0

1.1

Full MC result for JES at -5%

Full MC result for JES at +5%
Empirical approximation
of true response



Names and conventions – ‘profiling’ & ‘constraints’

• The full likelihood function of the form 

is usually referred to by physicists as a ‘profile likelihood’, and 
systematics are said to be ‘profiled’ when incorporated this way

– Note: statisticians use the word profiling for something else

• Physicists often refer to the subsidiary measurement as a 
‘constraint term’

– This is correct in the sense that it constrains the parameter α, but this labeling
commonly lead to mistaken statements (e.g. that it is a pdf for α)

– But it is not a pdf in the NP

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

Gauss(0 |α,1)Gauss(α | 0,1)



Names and conventions

• The ‘subsidiary measurement’ as simplified form of the ‘full 
calibration measurement’ also illustrates another important point

– The full likelihood is simply a joint likelihood of a physics measurement and a 
calibration measurement where both terms are treated on equal footing in the 
statistical procedure

– In a perfect world, not bound by technical modelling constraints
you would use this likelihood

where LJES is the full calibration measurement as performed by the Jet 
calibration group, based on a dataset y, and which may have other 
parameters θ specific to the calibration measurement.

• Since we are bound by technical constrains, we substitute LJES
with simplified (Gaussian) form, but the statistical treatment and 
interpretation remains the same

Wouter Verkerke, NIKHEF

L(N, y | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅LJES (
y |α,


θ )



The sideband measurement with a systematic uncertainty

• The extrapolation from
the sideband (CR) to the SR 
always assumes a model 
(that may carry an uncertainty)

– The factor τ may depend on
theory or detector factors that
are uncertainty.

– One should account for these! 

LSR (s,b) = Poisson(NSR | s+ b)
LCR (b) = Poisson(NCR | !τ ⋅b)

NB: Define parameter ‘b’ to represents 
the amount of bkg is the SR. 

Scale factor τ accounts for difference 
in size between SR and CR

CR SR

L(N,Nctl, 0 | s,b,αJES ) = Poisson(N | s+ b) ⋅Poisson(Nctl |τ (1+ XαJES ) ⋅b) ⋅Gauss(0 |αJES,1)

JES response model for ratio bSR/bCR Subsidiary measurement 
of JES response parameter



MC statistical uncertainties as systematic uncertainty

• In original JES uncertainty example, the MC statistical uncertainty 
was ignored (since 100Mevt were available)

• What should you do if MC statistical uncertainties cannot be 
ignored?

• Follow same procedure again as before: 
– Define response function (this is trivial for MC statistics: 

it is the luminosity ratio of the MC sample and the data sample)
– Define distribution for the ‘subsidiary measurement’ – This is a Poisson 

distribution – since MC simulation is also a Poisson process

– Construct full likelihood (‘profile likelihood’)

• Note uncanny similarity to full likelihood of a sideband measurement! 

Wouter Verkerke, NIKHEF

L(N,NMC | s,b) = Poisson(N | s+ b) ⋅Poisson(NMC |τ ⋅b)
Constant factor τ = L(MC)/L(data)

L(N,Nctl | s,b) = Poisson(N | s+ b) ⋅Poisson(Nctl |τ ⋅b)



Overview of common subsidiary measurement shapes

• Gaussian G(x|μ,σ)
– ‘Default’, motivated by Central Limit Theorem 

(asymp dist for sum of random variables)

• (Rescaled) Poisson P(N|μτ)
– Obvious choice for any subsidiary measurement

that is effectively a counting experiment

– NB: For a Poisson model the distribution in μ
is a Gamma distribution (posterior of Poisson)

– Scale factor τ allows to choose variance
independently of mean (e.g. to account for
side-band size ratio, data/mc lumi ratio) 

• LogNormal LN(x|μ,σ)
– Asymptotic distribution for product

of random variables
– Appealing property for many applications is

that it naturally truncates at x=0 Wouter Verkerke, NIKHEF



Specific issues with theory uncertainties

• Modeling of theoretical syst. uncertainties follows familiar pattern
– Define response
– Define distribution for the ‘subsidiary measurement’ 
– Construct full likelihood

• But distribution of subsidiary theory measurement can be a thorny issue
– For detector simulation uncertainties, subsidiary measurement usually based on actual 

measurement à Central Limit Theorem à convergence to Gaussian distribution when 
measurement is based on many events

– This argument does not always apply to theoretical uncertainties, as there may be no 
underlying measurement

• Example: (N)LO scale uncertainties in Matrix Element calculations
– Typical prescription “vary to 0.5x nominal and 2x nominal and consider the difference” 

makes no statement on distribution
– Yet proper statistical treatment of such an uncertainty (i.e. modeling in the likelihood) 

demands a specified distribution
– Not clear what to do. You can ask theory expert, but not clear if has a well-motivated 

choice of distribution…
– In any case if choice of distribution turns out not to matter too much, you just pick one.

Wouter Verkerke, NIKHEF



Specific issue with theory uncertainties

• Worst type of ‘theory’ uncertainty are prescriptions that result in 
an observable difference that cannot be ascribed to clearly 
identifiable effects

• Examples of such systematic prescriptions
– Evaluate measurement with CTEQ and MRST parton density functions and 

take the difference as systematic uncertainty.

– Evaluate measurement with Herwig and Pythia showering Monte Carlos and 
take the difference as systematic uncertainty 

• I call these ‘2-point systematics’. 
– You have the technical means to evaluate two known different configurations, 

but reasons for underlying difference are not clearly identified.

Wouter Verkerke, NIKHEF



Specific issue with theory uncertainties

• It is difficult to define rigorous statistical procedures to deal with 
such 2-point uncertainties. So you need to decide

• If their estimated effect is small, you can pragmatically ignore 
these lack of proper knowledge and ‘just do something 
reasonable’ to model these effects in a likelihood

• If their estimated effect is large, your leading uncertainty is related 
to an effect that largely ununderstood effect. This is bad for 
physics reasons! 

– You should go back to the drawing board and design a new measurement 
that is less sensitive to these issues.

– Hypothetical example: 
* You measure an inclusive cross-section.
* But Pythia-Herwig effect is largest uncertainty, originates from the visible-to-

inclusive acceptance factor.
* Does it make to publish the inclusive cross-section, or is it better to publish

visible cross-section in some well-defined fiducial range? 
* Your measurement can then contribute to further discussion and validation   

of various showering MC packages.  Wouter Verkerke, NIKHEF



Specific issues with theory uncertainties

• Pragmatic solutions to likelihood modeling of ‘2-point systematics’
• Final solution will need to follow usual pattern

• Since underlying concept of systematic uncertainty not defined,
the only option is to define its meaning terms in terms of response in the 
physics measurement

– Straightforward for a counting measurement, much more challenging for a distribution

• Example
– Estimate of bkg with Herwig = 8, with Pythia = 12
– In the likelihood choose b=8 and then define 

f(α) = |1+4*α|, so that f(0) results in ‘Herwig (b.f=8)’
and f(±1) results in ‘Pythia (b.f=12)’

– For lack of a better word you could call α now the 
‘Herwigness of fragmentation w.r.t its effect on my 
background estimate’  

• A thorny question remains: What is the subsidiary measurement for α?
– This should reflect you current knowledge on α.  

Wouter Verkerke, NIKHEF

L(N | s,α) = Poisson(N | s+ b ⋅ f (α)) ⋅SomePdf (0 |α)

αgen
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Pythia
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Specific issues with theory uncertainties

• Subsidiary measurement of a theoretical 2-point uncertainty 
effectively quantifies your ‘prior belief’ in models

• Formally staying in concepts of frequentist statistics here: likelihood of subsidiary measurement L(x|α) is strictly P(data|theory), 
but you ‘data’ here is not really data but something that quantifies your belief since you have no data on this problem.

• I realize this sounds very much like “you have no idea what you’re doing”, but to some extent this is precisely the problem 
with 2-point systematics – you really don’t know (or decided not to care about) the underlying physics issues.

• Some options and their effects

Wouter Verkerke, NIKHEF

HerwigPythia Pythia HerwigPythia Pythia HerwigPythia Pythia

Prefers Herwig at 1σ All predictions ‘between’
Herwig and Pythia equally
probable

Only ‘pure’ Herwig
and Pythia exist
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Box with 
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Modeling multiple systematic uncertainties

• Introduction of multiple systematic uncertainties presents no 
special issues

• Example JES uncertainty plus generator ISR uncertainty

• A brief note on correlations
– Word “correlations” often used sloppily – proper way is to think of correlations 

of parameter estimators. Likelihood defines parameters αJES, αISR. 
The (ML) estimates of these are denoted

– The ML estimators of               using the Likelihood of the subsidiary 
measurements are uncorrelated (since the product factorize in this example)

– The ML estimators of               using the full Likelihood may be correlated.
This is due to physics modeling effects encoded in the joint response function 

Wouter Verkerke, NIKHEF

L(N, 0 | s,αJES,α ISR ) = P(N | s+ b(1+ 0.1αJES + 0.05α ISR )) ⋅G(0 |αJES,1) ⋅G(0 |α ISR,1)

Joint response function
for both systematics

One subsidiary
measurement for each
source of uncertainty

α̂JES,α̂ ISR

α̂JES,α̂ ISR

α̂JES,α̂ ISR



Modeling systematic uncertainties in multiple channels

• Systematic effects that affect multiple measurements should be 
modeled coherently.

– Example – Likelihood of two Poisson counting measurements

– Effect of changing JES parameter αJES coherently affects both measurement.

– Magnitude and sign effect does not need to be same, this is dictated by the 
physics of the measurement 

Wouter Verkerke, NIKHEF

L(NA,NB | s,αJES ) = P(NA | s ⋅ fA + bA (1+ 0.1αJES )) ⋅P(NB | s ⋅ fB + bB (1− 0.3αJES )) ⋅G(0 |αJES,1) ⋅

JES response 
function for 
channel A

JES response 
function for 
channel B

JES
subsidiary

measurement



Summary on likelihood modeling of systematic uncertainties 

• To describe a systematic uncertainty in a likelihood model you need
– A response model that deterministically describes the effect underlying the 

uncertainty (e.g. a change in calibration). Such a model has one or more 
parameters that control the strength of the effect

– The ‘external knowledge’ on the strength of the effect is modeled as Likelihood 
representing the ‘subsidiary measurement’ through which this knowledge was 
obtained

• Conceptually this is identical to including the likelihood of the actual calibration 
measurement in the likelihood of the physics analysis

• In practice a simplified form of the measurement is included,  but you must choose an explicit 
distribution that best represents the original measurement. For systematic uncertainties that related to 
external measurements (calibrations), this is often a Gaussian or Poisson distribution

• Modeling prescription can easily be repeated to extend describe 
effect of multiple uncertainties in multiple simultaneous measurement

– Conceptually it is not more complicated, but technically it can get tedious. We 
have good tools for this à will discuss these later

Wouter Verkerke, NIKHEF



Summary on likelihood modeling of systematic uncertainties 

• Often the process of modeling uncertainties in the likelihood 
requires information that is traditionally not provided as part of a 
systematic uncertainty prescription

• This is good thing – your evaluation of these uncertainties 
otherwise relies on tacit assumptions on these. Discuss modeling 
assumptions you make with the prescription ‘provider’ 

• You may also learn that your measurement is strongly affect by 
something you don’t know (e.g. distribution of a theory 
uncertainty). This is also a good thing. This is a genuine physics 
problem, that you might have otherwise overlooked 

• Theory uncertainty modeling can pose difficult questions
– Usually discovered 3 days before approval deadline, tendency is to ‘be 

conservative’ and not think much about problem. ‘Conservative’ solution 
tend to be ‘naïve error propagation’ à problem gets hidden behind 
unspecified assumptions of that method. 

Wouter Verkerke, NIKHEF



Wouter Verkerke, NIKHEF

Dealing with
nuisance parameters
in statistical inference4



Dealing with nuisance parameters

• Modeling of systematic uncertainties has introduced many extra 
parameters in likelihood model that we’re not really interested in

– How do we deal with these in statistical inference?

• Semantic definition
– Parameter(s) of Interest – The (physics) parameter you are interested in. This 

result goes in your paper. Usually there is one, but sometimes more
– Nuisance parameters – Any other parameter of your model

• The goal of practical statistical inference is to make a statement 
about the POI that accounts for the uncertainties in the NPs so 
that the NPs themselves don’t need to be reported

– Procedure to accomplish this differs somewhat for various techniques
parameter/variance estimation, hypothesis testing, confidence intervals, 
Bayesian posteriors

• This section is purely on statistical methods – at no point it is 
important that a NP models a systematic uncertainty.

Wouter Verkerke, NIKHEF



The statisticians view on nuisance parameters

• In general, our model of the data is not perfect

• Can improve modeling by including additional adjustable parameters

• Goal: some point in the parameter space of the enlarged model 
should be “true”

• Presence of nuisance parameters decreases the sensitivity of the 
analysis of the parameter(s) of interest

Wouter Verkerke, NIKHEF



Treatment of nuisance parameters in parameter estimation

• In POI parameter estimation, the effect of NPs incorporated 
through unconditional minimization

– I.e. minimize Likelihood w.r.t all parameter simultaneously.

• Simple example with 2-bin Poisson counting experiment

Wouter Verkerke, NIKHEF

L(s,b) = Poisson(10 | s+ b)Poisson(10 | 3⋅b)

Unconditional
minimum in s,b

Conditional
minimum in s
(condition: b=5)

(ŝ, b̂)

ˆ̂s
b=5

L(s) = Poisson(10 | s+ 5)



Treatment of nuisance parameters in variance estimation

• Maximum likelihood estimator of parameter variance 
is based on 2nd derivative of Likelihood 

– For multi-parameter problems this 2nd derivative is generalized 
by the Hessian Matrix of partial second derivatives

• For multi-parameter likelihoods estimate of covariance Vij of pair
of 2 parameters in addition to variance of individual parameters

– Usually re-expressed in terms dimensionless correlation coefficients ρ

Wouter Verkerke, NIKHEF
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Treatment of nuisance parameters in variance estimation

• Effect of NPs on variance estimates visualized

Wouter Verkerke, NIKHEF
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Treatment of NPs in hypothesis testing and conf. intervals

• We’ve covered frequentist hypothesis testing and interval 
calculation using likelihood ratios based on a likelihood with a 
single parameter (of interest) L(μ)

– Result is p-value on hypothesis with given μ value, or

– Result is a confidence interval [μ-,μ+] with values of μ for which p-value is at or 
above a certain level (the confidence level)

• How do you do this with a likelihood L(μ,θ) where θ is a nuisance 
parameter?

– With a test statistics qμ, we calculate p-value for hypothesis θ as

• But what values of θ do we use for f(qμ|μ,θ)?
Fundamentally, we want to reject μ only if p<α for all θ
à Exact confidence interval

ò
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=
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Hypothesis testing & conf. intervals with nuisance parameters

• The goal is that the parameter of interest should be covered at the 
stated confidence for every value of the nuisance parameter

• if there is any value of the nuisance parameter which makes the 
data consistent with the parameter of interest, that value of the 
POI should be considered: 

– e.g. don’t claim discovery if any background scenario is compatible with data

• But: technically very challenging and significant problems with 
over-coverage

– Example: how broadly should ‘any background scenario’ be defined?  Should 
we include background scenarios that are clearly incompatible with the 
observed data?

Wouter Verkerke, NIKHEF, 85



Example of over-coverage

• The 1958 thought expt of David R. Cox focused the issue:
– Your procedure for weighing an object consists of flipping a coin to decide 

whether to use a weighing machine with a 10% error or one with a 1% error; 
and then measuring the weight.

• Then “surely” the error you quote for your measurement should 
reflect which weighing machine you actually used, and not the 
average error of the “whole space” of all measurements!

• But this is not how the classical frequentist confidence interval 
works!

– Suppose weight=100, coin=‘1% error’ Can you exclude weight=90 at 95% 
C.L? 

– No: because for ‘coin=10% error‘ weight=90 cannot be excluded at 95% C.L.

• Solution: conditioning on observed data will make result more 
relevant (at expense of exact frequentist coverage)

– Restricting whole space of probabilities to ‘coin=1% error’ only if that is 
observed allows to exclude weight=90 at 95% C.L. 



The profile likelihood construction as compromise

• For LHC the following prescription is used: 

Given L(μ,θ)

perform hypothesis test for each value of μ (the POI), 

using values of nuisance parameter(s) θ that best fit the data 
under the hypothesis μ

• Introduce the following notation

• The resulting confidence interval will have exact coverage for the 
points

– Elsewhere it may overcover or undercover (but this can be checked)

Wouter Verkerke, NIKHEF, 87

)(ˆ̂ µq M.L. estimate of θ for a given value of μ
(i.e. a conditional ML estimate)
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The profile likelihood ratio

• With this prescription we can construct the profile likelihood ratio 
as test statistic

• NB: value profile likelihood ratio does not depend on θ

Wouter Verkerke, NIKHEF, 88
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Profiling illustration with one nuisance parameter

Wouter Verkerke, NIKHEF, 89
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Profile scan of a Gaussian plus Polynomial probability model

Wouter Verkerke, NIKHEF

Likelihood Ratio

Profile Likelihood Ratio

Minimizes –log(L) 
for each value of fsig
by changing bkg shape params
(a 6th order Chebychev Pol)



Profile scan of a Gaussian plus Polynomial probability model

Wouter Verkerke, NIKHEF

Likelihood Ratio

Profile Likelihood Ratio

Minimizes –log(L) 
for each value of fsig
by changing bkg shape params
(a 6th order Chebychev Pol)

Interval on μ widens
due to effect of uncertain NPs



PLR Confidence interval vs MINOS

tμ(x,μ)

Profile Likelihood Ratio
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Profile Likelihood Ratio
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Measurement = tμ(xobs,μ) 
is now a function of μ

Asymptotically,
distribution is identical
for all μ

NB: asymptotically, distribution 
is also independent of true 
values of θ



Summary of statistical treatment of nuisance parameters

• All of the statistical techniques mentioned in section 2 have an 
associated technique to propagate the effect of the NPs on the 
POI

– Parameter estimation à Joint unconditional estimation

– Variance estimation à Replace d2L/dp2 with Hessian matrix

– Hypothesis tests & confidence intervals à Use profile likelihood ratio
– Bayesian credible intervals à Integration (‘Marginalization)

• Be sure to use the right procedure with the right method
– Anytime you integrate a Likelihood you are a Bayesian

– If you sample something chances are you performing either a (Bayesian) 
Monte Carlo integral, or are doing glorified error propagation

• Answers can differ substantially between methods!
– This is not always a problem, but can also be a consequence of a difference in 

the problem statement 

Wouter Verkerke, NIKHEF
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Systematic uncertainties
and profiling
Wouter Verkerke 
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Outline of this course

• Outline of this course
1. What are systematic uncertainties?

2. The likelihood function as basis for statistical inference
3. Incorporating systematic uncertainties in probability models

4. Dealing with nuisance parameters in statistical inference

5. Modeling shape systematics: template morphing

6. Tools for modelling building

7. Diagnostics I: Fit stability, understanding how minimizers work 

8. Diagnostics II: Result diagnostics, choice of nuisance parameters

9. Summary

Wouter Verkerke, NIKHEF



So far we’ve only considered the ideal experiment

• The “only thing” you need to do (as an experimental physicist) is to 
formulate the likelihood function for your measurement

• For an ideal experiment, where signal and background are 
assumed to have perfectly known properties, this is trivial

• So far only considered a single parameter in the likelihood:
the physics parameter of interest, usually denoted as μ

Wouter Verkerke, NIKHEF

L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏



The imperfect experiment

• In realistic measurements many effect that we don’t control 
exactly influence measurements of parameter of interest

• How do you model these uncertainties in the likelihood? 

Wouter Verkerke, NIKHEF

L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏

Signal and background predictions
are affected by (systematic) uncertainties



The simulation workflow and origin of uncertainties

Wouter Verkerke, NIKHEF
Wouter Verkerke, NIKHEF 
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The sideband measurement

• Suppose your data 
in reality looks like this è

Can estimate level of background in the ‘signal region’ from event 
count in a ‘control region’ elsewhere in phase space 

• Full likelihood of the measurement (‘simultaneous fit’)

LSR (s,b) = Poisson(NSR | s+ b)
LCR (b) = Poisson(NCR | !τ ⋅b)

NB: Define parameter ‘b’ to represents 
the amount of bkg is the SR. 

Scale factor τ accounts for difference 
in size between SR and CR

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

CR SR

“Background uncertainty constrained from the data”



Generalizing the concept of the sideband measurement

• Background uncertainty from sideband clearly clearly not a 
‘systematic uncertainty’

• Now consider scenario where b is not measured from a sideband, 
but is taken from MC simulation with an 8% cross-section 
‘systematic’ uncertainty

– We can model this in the same way, because the cross-section uncertainty is 
also (ultimately) the result of a measurement

Wouter Verkerke, NIKHEF

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)

‘Measured background rate by MC simulation’

‘Subsidiary measurement’
of background rate

Generalize: ‘sideband’ à ‘subsidiary measurement’



Modeling a detector calibration uncertainty

• Simplify expression by renormalizing “subsidiary measurement”

Wouter Verkerke, NIKHEF

L(N | s,α) = Poisson(N | s+ !b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Signal rate (our parameter of interest)

Observed event count

Nominal background 
expectation from MC
(a constant)

Response function
for normalized JES 

parameter
[a unit change in α 

– a 5% JES change –
still results in a 10% 
acceptance change]

“Normalized 
subsidiary measurement”

The scale of parameter
α is now chosen such that 
values ±1 corresponds to the 
nominal uncertainty
(in this example 5%)

Gauss( α |α,σα )



The response function as empirical model of full simulation

• Note that the response function is generally not linear, but can in 
principle always be determined by your full simulation chain

– But you cannot run your full simulation chain for any arbitrary ‘systematic 
uncertainty variation’ à Too much time consuming

– Typically, run full MC chain for nominal and ±1σ variation of systematic 
uncertainty, and approximate response for other values of NP with interpolation

– For example run at nominal JES and with JES shifted up and down by ±5%

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

α

b(
α)

-1 0 +1 0.9

1.0

1.1

Full MC result for JES at -5%

Full MC result for JES at +5%
Empirical approximation
of true response
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Modeling 
shape systematics:
template morphing5



Introducing response functions for shape uncertainties 

• Modeling of systematic uncertainties in Likelihoods describing 
distributions follows the same procedure as for counting models

– Example: Likelihood modeling 
distribution in a di-lepton invariant
mass. POI is the signal strength μ

• Consider a lepton energy scale 
systematic uncertainty that affects this measurement

– The LES has been measured with a 1% precision

– The effect of LES on mll has been determined to a 2% shift for 1% LES change
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L( mll |µ) = µ ⋅Gauss(mll
(i), 91,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏

L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)

Response function Subsidiary measurement



Response modeling for distributions

• For a change in the rate, response 
modeling of histogram-shaped 
distribution is straightforward:
simply scale entire distribution

• But what about a systematic uncertainty that shifts the mean,
or affects the distribution in another way?
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L(
!
N |µ) = Poisson(

i
∏ Ni |µ !si + !bi )

L(
!
N |µ,α) = Poisson(

i
∏ Ni |µ !si ⋅ (1+3.75α)+ !bi ) ⋅Gauss(0 |α,1)

Response function
for signal rate

Subsidiary 
measurement



Modeling of shape systematics in the likelihood

• Effect of any systematic uncertainty that affects the shape of a 
distribution can in principle be obtained from MC simulation chain

– Obtain histogram templates for distributions at ‘+1σ’ and ‘-1σ’ 
settings of systematic effect

• Now construct a response function based on the shape of these 
three templates. 

Wouter Verkerke, NIKHEF

‘-1σ’ ‘nominal’ ‘+1σ’



Need to interpolate between template models

• Need to define ‘morphing’ algorithm to define 
distribution s(x) for each value of α

Wouter Verkerke, NIKHEF
s(x,α=-1)

s(x,α=0)

s(x,α=+1)
s(x)|α=-1

s(x)|α=0

s(x)|α=+1



Piecewise linear interpolation

• Simplest solution is piece-wise linear interpolation for each bin

Wouter Verkerke, NIKHEF

Piecewise linear
interpolation
response model
for a one bin

Extrapolation to |α|>1

Kink at α=0

Ensure si(α)≥0



Visualization of bin-by-bin linear interpolation of distribution

Wouter Verkerke, NIKHEF

xα



Limitations of piece-wise linear interpolation

• Bin-by-bin interpolation looks spectacularly easy and simple, 
but be aware of its limitations

– Same example, but with larger ‘mean shift’ between templates

Wouter Verkerke, NIKHEF

Note double peak structure around |α|=0.5



• Also be aware of extrapolation effects
– Nuisance parameters associated to systematic uncertainties can be pulled 

well beyond ‘1σ’, especially in high-significance hypothesis testing

– Original example (with modest shift), but now visualized up to |α|=5 

Wouter Verkerke, NIKHEF

Limitations of piece-wise linear interpolation

MC statistical fluctuations
amplified by extrapolation



Non-linear interpolation options

• Piece-wise linear interpolation leads to kink in response functions that 
may result in pathological likelihood functions

• A variety of other interpolation options exist that improve this
– Parabolic interpolation/linear extrapolation (but causes shift of minimum)

– Polynomial interpolation [orders 1,2,4,6]/linear extrapolation (order 1 term allows
for asymmetric modeling of templates)

Wouter Verkerke, NIKHEF

L(α>0) predicts α<0 L(α<0) predicts α>0



Non-linear interpolation options

• Comparison of common interpolation options

Wouter Verkerke, NIKHEF



Piece-wise interpolation for >1 nuisance parameter

• Concept of piece-wise linear interpolation can be trivially extended 
to apply to morphing of >1 nuisance parameter.

– Difficult to visualize effect on full distribution, but easy to understand concept 
at the individual bin level

– One-parameter interpolation

– N-parameter interpolation

Wouter Verkerke, NIKHEF
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0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

Visualization of 2D interpolation
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Other morphing strategies – ‘horizontal morphing’

• Other template morphing strategies exist that are less 
prone to unintended side effects

• A ‘horizontal morphing’ strategy was invented by Alex Read. 
– Interpolates the cumulative distribution function instead of the distribution
– Especially suitable for shifting distributions
– Here shown on a continuous distribution, but also works on histograms
– Drawback: computationally expensive, algorithm only worked out for 1 NP

Wouter Verkerke, NIKHEF

Integrate

Integrate

Interpolate Differentiate



Yet another morphing strategy – ‘Moment morphing’

• Given two template model f-(x) and f+(x) the strategy of moment 
morphing considers first two moment of template models
(mean and variance)

• The goal of moment morphing is to construct an interpolated function 
that has linearly interpolated moments

• It constructs this morphed function as combination of linearly 
transformed input models

– Where constants a,b,c,d are chosen such so that f(x,α) satisfies conditions [1]
Wouter Verkerke, NIKHEF

f (x,α)→α f−(ax + b)+ (1−α) f+(cx − d)

µ− = x ⋅ f−(x)∫ dx

V− = (x −µ− )
2 ⋅ f−(x)∫ dx

µ+ = x ⋅ f+(x)∫ dx

V+ = (x −µ+ )
2 ⋅ f+(x)∫ dx

µ(α) =αµ− + (1−α)µ+

V (α) =αV− + (1−α)V+
[1]

M. Baak & S. Gadatsch



Yet another morphing strategy – ‘Moment morphing’

• For a Gaussian probability model with linearly 
changing mean and width, moment morphing 
of two Gaussian templates is the exact solution

• But also works well on ‘difficult’ distributions

• Good computational performance
– Calculation of moments of templates is expensive,

but just needs to be done once, otherwise very fast (just linear algebra)

• Multi-dimensional interpolation strategies exist 
Wouter Verkerke, NIKHEF

f (x,α)→α f−(ax + b)+ (1−α) f+(cx − d)



Comparison of morphing algorithms

Wouter Verkerke, NIKHEF, 118

Vertical
Morphing

Horizontal
Morphing

Moment
Morphing

Gaussian
varying
width

Gaussian
varying
mean

Gaussian
to

Uniform
(this is

conceptually ambigous!)

n-dimensional
morphing? ✗



Shape, rate or no systematic?

• Be judicious with modeling of systematic with little or no significant 
change in shape (w.r.t MC template statistics)

– Example morphing of a very subtle change in the background model

– Is this a meaningful new degree of freedom in the likelihood model?

– A χ2 or KS test between
nominal and alternate
template can help to decide 
if a shape uncertainty is meaningul

– Most systematic uncertainties
affect both rate and shape, but can make
independent decision on modeling rate (which less likely to affect fit stability)

Wouter Verkerke, NIKHEF



Fit stability due to insignificant shape systematics

• Shape of profile likelihood in NP α clearly raises two points

• 1) Numerical minimization process will be ‘interesting’

• 2) MC statistical effects induce strongly defined minima that are fake
– Because for this example all three templates were sampled from the same parent 

distribution (a uniform distribution)

Wouter Verkerke, NIKHEF

+ à
− logλ(α) = − log L(α,

ˆ̂µ)
L(α̂, µ̂)



Recap on shape systematics & template morphing 

• Implementation of shape systematic in 
likelihoods modeling distributions conceptually 
no different that rate systematics in counting 
experiments

• For template modes obtained from MC simulation template 
provides a technical solution to implement response function

– Simplest strategy piecewise linear interpolation,
but only works well for small changes

– Moment morphing better adapted to modeling
of shifting distributions

– Both algorithms extend to n-dimensional
interpolation to model multiple systematic NPs
in response function

– Be judicious in modeling ‘weak’ systematics:
MC systematic uncertainties will dominate likelihood Wouter Verkerke, NIKHEF

L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)



Example 1: counting expt

• Will now demonstrate how to 
construct a model for a 
counting experiment with
a systematic uncertainty

Wouter Verkerke, NIKHEF

// Subsidiary measurement of alpha
w.faxtory(“Gaussian::subs(0,alpha[-5,5],1)”) ;

// Response function mu(alpha)
w.factory(“expr::mu(‘s+b(1+0.1*alpha)’,s[20],b[20],alpha)”) ;  

// Main measurement 
w.factory(“Poisson::p(N[0,10000],mu)”);

// Complete model Physics*Subsidiary
w.factory(“PROD::model(p,subs)”) ;

L(N | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)



Example 2: unbinned L with syst. 

• Will now demonstrate how to 
code complete example of
the unbinned profile likelihood 
of Section 5:

Wouter Verkerke, NIKHEF

L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES ),1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)

// Subsidiary measurement of alpha
w.factory(“Gaussian::subs(0,alpha[-5,5],1)”);

// Response function m(alpha)
w.factory(“expr::m_a(“m*(1+2alpha)”,m[91,80,100],alpha)”) ;  

// Signal model
w.factory(“Gaussian::sig(x[80,100],m_a,s[1])”)

// Complete model Physics(signal plus background)*Subsidiary
w.factory(“PROD::model(SUM(mu[0,1]*sig,Uniform::bkg(x)),subs)”) ;



Example 3 : binned L with syst

• Example of template morphing
systematic in a binned likelihood
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L(

N |α, s −, s 0, s + ) = P(Ni | si (α, si

−, si
0, si

+ )
bins
∏ ) ⋅G(0 |α,1)

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&
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// Import template histograms in workspace
w.import(hs_0,hs_p,hs_m) ;

// Construct template models from histograms
w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ;
w.factory(“HistFunc::s_p(x,hs_p)”) ;
w.factory(“HistFunc::s_m(x,hs_m)”) ;

// Construct morphing model
w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ; 

// Construct full model
w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),Gaussian(0,alpha,1))”) ;



Other uncertainties in MC shapes – finite MC statistics 

• In practice, MC distributions used for template fits have finite 
statistics.

• Limited MC statistics represent an uncertainty on your model 
à how to model this effect in the Likelihood?

Wouter Verkerke, NIKHEF



Other uncertainties in MC shapes – finite MC statistics 

• Modeling MC uncertainties: each MC bin has a Poisson uncertainty

• Thus, apply usual ‘systematics modeling’ prescription.  

• For a single bin – exactly like original counting measurement

Lbin−i (µ) = Poisson(Ni |µ ⋅ !si + !bi )

Lbin−i (µ, si,bi ) = Poisson(Ni |µ ⋅ si + bi )
⋅Poisson(Ni

MC−s | si )
⋅Poisson(Ni

MC−b | bi )

Fixed signal, bkg MC prediction

Signal, bkg
MC nuisance params

Subsidiary measurement for signal MC
(‘measures’ MC prediction si with Poisson uncertainty)



Nuisance parameters for template statistics

• Repeat for all bins

• Result: accurate model for MC statistical uncertainty, but lots of 
nuisance parameters (#samples x #bins)...

L(
!
N |µ) = P(Ni |µ ⋅ !si + !bi )

bins
∏

L(
!
N |µ, !s,

!
b) = P(Ni |µ ⋅ si + bi )

bins
∏ P(!si | si

bins
∏ ) P( !bi | bi

bins
∏ )

Binned likelihood 
with rigid template

Response function
w.r.t. s, b as parameters

2x Nbins subsidiary 
measurements
of s ,b from s~,b~



The effect of template statistics

• When is it important to model the effect of template 
statistics in the likelihood

– Roughly speaking the effect of template statistics becomes 
important when Ntempl< 10x Ndata (from Beeston & Barlow)

• Measurement of effect of template statistics in 
previously shown toy likelihood model, where
POI is the signal yield

Wouter Verkerke, NIKHEF, 128

‘model 2 – Beeston-Barlow likelihood’
‘model 1 – plain template likelihood’

NMC=Ndata

NMC=10Ndata

Note that even at
NMC=10Ndata
uncertainty on POI 
can be underestimated
by 10% without BB



Reducing the number NPs – Beeston-Barlow ‘lite’ 

• Another approach that is being used is called ‘BB’ – lite

• Premise: effect of statistical fluctuations on sum of templates is 
dominant à Use one NP per bin instead of one NP per 
component per bin 

L(

N | n) = P(Ni | ni )

bins
∏ P(si + bi | ni

bins
∏ )

L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

bins
∏ ))

Response function
w.r.t. n as parameters

Subsidiary measurements
of n from s~+b~

Normalized NP lite model (nominal value of all γ is 1)

L(

N | s,


b) = P(Ni | si + bi )

bins
∏ P(si | si

bins
∏ ) P( bi | bi

bins
∏ )

‘Beeston-Barlow’

‘Beeston-Barlow lite ’



The accuracy of the BB-lite approximation

• The Beeston-Barlow ‘lite’ approximation is quite good 
for high template statistics

• Deviation at low template statistics large due to imperfect 
modeling of template bins with zero content  Wouter Verkerke, NIKHEF

10 evts/bin avg

100 evts/bin avg

‘model 2 – Beeston-Barlow full’
‘model 3 – Beeston-Barlow lite’



The interplay between shape systematics and MC systematics

• Best practice for template morphing models is to also include effect 
of MC systematics

• Note that that for every ‘morphing systematic’ there is an set of two 
templates that have their own (independent) MC statistical 
uncertainties.

– A completely accurate should model MC stat uncertainties of all templates

• But has severe practical problems
– Can only be done in ‘full’ Beeston-Barlow model, not in ‘lite’ mode, enormous 

number of NP models with only a handful of shape systematics…
Wouter Verkerke, NIKHEF

L(

N |α, s −, s 0, s + ) = P(Ni | si (α, si

−, si
0, si

+ )
bins
∏ ) P(

bins
∏ si

− | si
− ) P(

bins
∏ si

0 | si
0 ) P(

bins
∏ si

+ | si
+ )

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

Morphing response function Subsidiary measurements



The interplay between shape systematics and MC systematics

• Commonly chosen 
practical solution

• Approximate MC template statistics already significantly improves 
influence of MC fluctuations on template morphing

– Because ML fit can now ‘reweight’ contributions of each bin 
Wouter Verkerke, NIKHEF

L(

N | s,


b) = P(Ni |γ i ⋅[si (α, si

−, si
0, si

+ )+ bi ])
bins
∏ P(si + bi |γ i ⋅[ si + bi ]

bins
∏ )G(0 |α,1)

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

Morphing & MC response function

Models relative MC rate uncertainty for each bin w.r.t the nominal 
MC yield, even if morphed total yield is slightly different

Subsidiary measurements

without BB-L
with BB-L



Pruning complexity – MC statistical for selected bins

• Can also make decision to model MC statistical uncertainty on a 
bin-by-bin basis

– No modeling for high statistics bins

– Explicit modeling for low-statistics bins

Wouter Verkerke, NIKHEF

L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

low−stats bins
∏ )) δ(γ i )

hi−stats bins
∏



Adapting binning to event density

• Effect of template statistics can also be controlled by rebinning
data such all bins contain expected and observed events

– For example choose binning such that expected background has a uniform 
distribution (as signals are usually small and/or uncertain they matter less)

Wouter Verkerke, NIKHEF



Example 4 – Beeston-Barlow light

• Beeston-Barlow-(lite) modeling
of MC statistical uncertainties

Wouter Verkerke, NIKHEF

L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

bins
∏ ))

// Import template histogram in workspace
w.import(hs) ;

// Construct parametric template models from histograms
// implicitly creates vector of gamma parameters
w.factory(“ParamHistFunc::s(hs)”) ;

// Product of subsidiary measurement
w.factory(“HistConstraint::subs(s)”) ; 

// Construct full model
w.factory(“PROD::model(s,subs)”) ;



Example 5 – BB-lite + morphing

• Template morphing model
with Beeston-Barlow-lite
MC statistical uncertainties

L(

N | s,


b) = P(Ni |γ i ⋅[si (α, si

−, si
0, si

+ )+ bi ])
bins
∏ P(si + bi |γ i ⋅[ si + bi ]

bins
∏ )G(0 |α,1)

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&
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// Import template histograms in workspace
w.import(hs_0,hs_p,hs_m,hb) ;

// Construct parametric template morphing signal model
w.factory(“ParamHistFunc::s_p(hs_p)”) ;
w.factory(“HistFunc::s_m(x,hs_m)”) ;
w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ;
w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ; 

// Construct parametric background model (sharing gamma’s with s_p)
w.factory(“ParamHistFunc::bkg(hb,s_p)”) ;

// Construct full model with BB-lite MC stats modeling
w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),

HistConstraint({s_0,bkg}),Gaussian(0,alpha,1))”) ;



Summary on template morphing and template statistics

• Template morphing allows to model arbitrary responses of shape 
systematics in template models

– Various techniques exist, choose carefully, be wary of MC statistical effects 
that can dominate systematic effect

• Modeling of MC statistical uncertainties important if NMC<10xNdata

– Full Beeston-Barlow likelihood most accurate, but leads to enormous number 
of Nuisance parameters

– Beeston-Barlow-lite procedures gives very comparable answers if template 
statistics are sufficient and results in less NPs

– Modeling of MC statistical uncertainties improves stability of template 
morphing algorithms

Wouter Verkerke, NIKHEF
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Modeling tools:
RooFit, RooStats
& HistFactory6



Coding probability models and likelihood functions

• Discussion on implementation of systematic uncertainties in 
likelihood models has lead to very complex probability models

• All statistical techniques discussed in Section 2,4 require numeric 
minimization of likelihood functions. See problem in three parts

1. Construction of probability models and likelihood functions (always needed) 
2. Minimization of likelihood functions (for parameter estimation, variance 

estimate, likelihood-ratio intervals)

3. Construction of test statistics and calculation of their distributions, 
construction of Neyman constructions on test statistics (p-values, confidence 
intervals) and calculation (MC(MC)) integrals over Likelihood (Bayesian 
credible intervals, Bayes factors)

• For step 2 (minimization) the HEP industry standard is MINUIT

• For steps 1, 3 good tools have been developed in the past years,
will discuss these now.

Wouter Verkerke, NIKHEF



RooFit, RooStats and HistFactory

Wouter Verkerke, NIKHEF

RooFit
Language for building
probability models

Comprises datasets,
likelihoods, minimization,
toy data generation,
visualization and persistence

HistFactory

Language to simplify
construction of RooFit
models of a particular type: 
binned likelihood
template (morphing) models

RooStats

Suite of statistical tests
operating on RooFit
probability models 

W. Verkerke & D. Kirkby
(exists since 1999) K. Cranmer, A. Shibata, G. Lewis, 

L. Moneta, W. Verkerke
(exists since 2010) 

K. Cranmer, G. Schott,
L. Moneta, W. Verkerke
(exists since 2008) 

Will cover RooFit and HistFactory in
a bit more detail since they relate
to model building – the key topic of this course

Will briefly sketch
workings of RooStats HistFitter

is a tool that configures 
HistFactory and RooStats
in a consistent way 



RooFit core design philosophy

• Mathematical objects are represented as C++ objects

variable RooRealVar

function RooAbsReal

PDF RooAbsPdf

space point RooArgSet

list of space points RooAbsData

integral RooRealIntegral

RooFit classMathematical concept

)(xf

x

x!

dxxf
x

x
ò
max

min

)(

)(xf

5



RooFit core design philosophy - Workspace

• The workspace serves a container class for all
objects created

Gauss(x,μ,σ)

RooRealVar x RooRealVar y RooRealVar z

RooGaussian g

RooRealVar x(“x”,”x”,-10,10) ;
RooRealVar m(“m”,”y”,0,-10,10) ;
RooRealVar s(“s”,”z”,3,0.1,10) ;
RooGaussian g(“g”,”g”,x,m,s) ;

Math

RooFit
diagram

RooFit
code

6



RooFit core design philosophy - Workspace

• The workspace serves a container class for all
objects created

RooRealVar x RooRealVar y RooRealVar z

RooGaussian g

RooRealVar x(“x”,”x”,-10,10) ;
RooRealVar m(“m”,”y”,0,-10,10) ;
RooRealVar s(“s”,”z”,3,0.1,10) ;
RooGaussian g(“g”,”g”,x,m,s) ;
RooWorkspace w(“w”) ;
w.import(g) ;

Math

RooFit
diagram

RooFit
code

6

RooWorkspace

Gauss(x,μ,σ)



Populating a workspace the easy way – “the factory”

• The factory allows to fill a workspace with pdfs and variables using 
a simplified scripting language

RooRealVar x RooRealVar y RooRealVar z

RooAbsReal f

RooWorkspace w(“w”) ;
w.factory(“RooGaussian::g(x[-10,10],m[-10,10],z[3,0.1,10])”);

Math

RooFit
diagram

RooFit
code

RooWorkspace

Gauss(x,μ,σ)



Example 1: counting expt

• Will now demonstrate how to 
construct a model for a 
counting experiment with
a systematic uncertainty

Wouter Verkerke, NIKHEF

// Subsidiary measurement of alpha
w.faxtory(“Gaussian::subs(0,alpha[-5,5],1)”) ;

// Response function mu(alpha)
w.factory(“expr::mu(‘s+b(1+0.1*alpha)’,s[20],b[20],alpha)”) ;  

// Main measurement 
w.factory(“Poisson::p(N[0,10000],mu)”);

// Complete model Physics*Subsidiary
w.factory(“PROD::model(p,subs)”) ;

L(N | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)



The workspace

• The workspace concept has revolutionized the way people share and 
combine analysis

– Completely factorizes process of building and using likelihood functions
– You can give somebody an analytical likelihood of a (potentially very complex) 

physics analysis in a way to the easy-to-use, provides introspection, and is easy to 
modify.

Wouter Verkerke, NIKHEF 

RooWorkspace

RooWorkspace w(“w”) ;
w.import(sum) ;
w.writeToFile(“model.root”) ;

model.root



The full ATLAS Higgs combination in a single workspace…

F(x,p)

x p

Atlas Higgs combination model (23.000 functions, 1600 parameters)

Model has ~23.000 function objects, ~1600 parameters
Reading/writing of full model takes ~4 seconds

ROOT file with workspace is ~6 Mb



Collaborative analyses with workspaces

• Workspaces allow to share and modify very complex analyses 
with very little technical knowledge required

• Example: Higgs coupling fits

Wouter Verkerke, NIKHEF 

Full 
Higgs 
model

Signal
strength

in 5
channels

Reparam
in terms

of fermion,
v-boson

scale 
factors

Confidence
intervals

on Higgs
fermion,
v-boson

couplings



Collaborative analyses with workspaces

• How can you reparametrize existing Higgs likelihoods in practice?

• Write functions expressions corresponding to new 
parameterization

• Edit existing model 

Wouter Verkerke, NIKHEF 

RooFormulaVar mu_gg_func(“mu_gg_func”,
“(KF2*Kg2)/(0.75*KF2+0.25*KV2)”,
KF2,Kg2,KV2) ;

w.import(mu_gg_func) ;
w.factory(“EDIT::newmodel(model,mu_gg=mu_gg_gunc)”) ;

Top node of original
Higgs combination pdf

Top node of modified
Higgs combination pdf

Modification prescription
replace parameter mu_gg
with function mu_gg_func
everywhere
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MINUIT and convergence of profile likelihood fits

• Likelihoods with systematics modeling (‘profile likelihood fits’) tend 
to be more complex than ‘normal’ fits

• Sometimes these likelihood can have pathological features that 
frustrate the minimization process

• To help you understand I will briefly cover
– How MINUIT works and defines ‘convergence’

– Typical problems that occur in profile likelihood models and how these affect 
MINUIT

Wouter Verkerke, NIKHEF



MINUIT in a nutshell

• MINUIT is a function minimization and analysis packages written 
by Fred James

– Original FORTRAN version more than 40 years old!

– Currently two versions in C++ in ROOT: TMinuit and Minuit2. Former is a 
‘machine translated version’ from FORTRAN, latter hand-ported version under 
the supervision of Fred James

– I recommend to always use Minuit2 – performance has been exhaustively 
validated against the original minuit and you get much more useful diagnostic 
information out of it. 

• Three analysis routines implement main functionality
– MIGRAD: Function minimization using the variable metric method developed 

by Fletcher Davidon and Powell. (This is efffectively equivalent to the ‘industry 
standard’ method of Broyden, Fletcher, Goldfarb and Shanno ‘BFGS’)

– HESSE: Error analysis: Calculates Hessian matrix of 2nd derivatives and inverts 
this into the covariance matrix

– MINOS: Calculates intervals based on the profile likelihood ratio

Wouter Verkerke, NIKHEF



Function minimization using the variable metric method 

• MINUIT does not implement a simple ‘steepest descent’ method
as plain gradient often does not point well in direction of minimum

Wouter Verkerke, NIKHEF



Function minimization using the variable metric method 

• Instead concept of ‘conjugate gradients’ that exploit knowledge of 
covariance information

Wouter Verkerke, NIKHEF

position: x0
gradient: g0
Covariance: V0 = G-1 = IG(f)=

position: x1=x0-V0g0
gradient: g1

Covariance: V1 = V0+f(V0,x0,x1,g0,g1)

Davidon-Fletcher-Power rank 2 formula

NB: If function is perfectly parabolic 
and initial V0 is correct, 
convergence in one step! 



Function minimization using the variable metric method 

• Convergence criteria is based on ‘estimated distance to minimum’
– EDM ‘estimated vertical distance to minimum’ assuming parabolic function

– NB: Derives from general distance metric in non-Euclidian space

• Note that both minimization and convergence criteria depend on 
knowledge of covariance matrix

• There are 2 ways to calculate V
1. From the Davidon-Fletcher-Power formula

2. From the inversion of the Hessian matrix 

Wouter Verkerke, NIKHEF

2 ⋅EDM = ρ = gTVg

Δs2 = ΔxTAΔx
Covariant metric tensor

V =G−1

Calculation of Hessian is expensive 
(½N2 likelihood evaluations)



MINUIT convergence

• After every VariableMetric
step calculate EDM = ½gTVg

• Terminate VM procedure when EDM<0.001

Wouter Verkerke, NIKHEF

VariableMetric: start iterating until Edm is < 0.001
VariableMetric: Initial state   - FCN =  -289.1204081677 Edm =      46.0713 NCalls =   1826
VariableMetric: Iteration #   1 - FCN =  -299.3073097602 Edm =      9.18415 NCalls =   2226
VariableMetric: Iteration #   2 - FCN =  -304.9468725143 Edm =      2.22698 NCalls =   2624
VariableMetric: Iteration #   3 - FCN =  -306.3323972775 Edm =      1.43793 NCalls =   3016
VariableMetric: Iteration #   4 - FCN =   -307.199970017 Edm =     0.615574 NCalls =   3410
VariableMetric: Iteration #   5 - FCN =  -307.6493784582 Edm =     0.352904 NCalls =   3804
VariableMetric: Iteration #   6 - FCN =  -307.8960954798 Edm =    0.0749124 NCalls =   4196
VariableMetric: Iteration #   7 - FCN =  -307.9549184882 Edm =    0.0498047 NCalls =   4588
VariableMetric: Iteration #   8 - FCN =  -308.0068371877 Edm =      0.03473 NCalls =   4980
VariableMetric: Iteration #   9 - FCN =  -308.0564661263 Edm =    0.0266955 NCalls =   5372
VariableMetric: Iteration #  10 - FCN =  -308.1092267909 Edm =     0.038622 NCalls =   5764
VariableMetric: Iteration #  11 - FCN =  -308.1547659161 Edm =    0.0290921 NCalls =   6156
VariableMetric: Iteration #  12 - FCN =  -308.1870210082 Edm =   0.00827767 NCalls =   6548
VariableMetric: Iteration #  13 - FCN =  -308.2008924182 Edm =    0.0034224 NCalls =   6940
VariableMetric: Iteration #  14 - FCN =  -308.2064790118 Edm =   0.00151676 NCalls =   7332
VariableMetric: Iteration #  15 - FCN =  -308.2090105175 Edm =   0.00106118 NCalls =   7724
VariableMetric: Iteration #  16 - FCN =  -308.2106535849 Edm =  0.000634155 NCalls =   8116



MINUIT converge

• (Terminate VM procedure when EDM<0.001)
– Note that EDM  up to here was calculated with V from DFP updater formula

• From here on, procedure depends on ‘strategy code’
– Code 0: terminate line search

– Code 2: Recalculate V from G-1 (HESSE)
if EDM(HESSE)>0.001 restart line search, else terminate

– Code 1: If accuracy of Vn from DFP  better than 5% terminate,
else follow Code 2 procedure   

• Strategy 1 is the default. 
Wouter Verkerke, NIKHEF

VariableMetric: Iteration #  12 - FCN =  -308.1870210082 Edm =   0.00827767 NCalls =   6548
VariableMetric: Iteration #  13 - FCN =  -308.2008924182 Edm =    0.0034224 NCalls =   6940
VariableMetric: Iteration #  14 - FCN =  -308.2064790118 Edm =   0.00151676 NCalls =   7332
VariableMetric: Iteration #  15 - FCN =  -308.2090105175 Edm =   0.00106118 NCalls =   7724
VariableMetric: Iteration #  16 - FCN =  -308.2106535849 Edm =  0.000634155 NCalls =   8116



HESSE Convergence

• For smooth functions covariance estimates from HESSE are 
generally more accurate than those from Davidon-Fletcher-Powell 
but matrix inversion step is vulnerable to singularity issues

• Singularities detected with eigenvalue analysis of Hessian matrix G 
before matrix inversion

– If  ‘smallest eigenvalue’/’largest eigenvalue’ < 10-6 then matrix is declared ‘not 
positive definite’ 

– Note that happens for both negative and small eigenvalues
– In that case an ‘ad-hoc’ term is added to the diagonal of the Hessian matrix to 

force it positive definite so that it can be inverted

• The ‘adjusted’ V from HESSE is then used to calculate the EDM
– EDM estimate less reliable in this case, may cause MINUIT to endlessly go 

back to VariableMetric line search and eventually give up 
‘maximum number of calls exceeded’

Wouter Verkerke, NIKHEF



Likelihood models that cause MINUIT problems

• Example 1 – Strong correlations
– Consider this simple likelihood model with one NP

– What does the likelihood look like, e.g. for N=1000?

– Strong correlations, but numerically feasible

Wouter Verkerke, NIKHEF

L1(µ,α) = Poisson(N |µS(1+τα))Gaussian(0 |α,1)

Scan of –log L(μ,α) Error ellipse from V(μ,α) HESSE

ρ=0.9945



Increasing the observed event count

N=1000 N=10.000 N=100.000
Vertical
scale
maximized
at 0.5 units

ρ=-0.9945 ρ=-0.9995 ρ=-0.98

Sc
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Increasing the observed event count

N=1.000.000 N=10.000.000

Vertical
scale
maximized
at 0.5 units

ρ=-0.9996 ρ=-0.998

HESSE WARNING: 
Matrix not positive definite
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Likelihood models that cause MINUIT problems

• Example 2 – Hidden strong correlations
– Consider this trivial extension of the previous example with 2 NPs

– Underlying scenario: two (independent) sources of systematic uncertainty that 
have a similar effect on the physics measurement

– What does (profile) likelihood look like for various S? 

Wouter Verkerke, NIKHEF 

L2 (µ,α1,α2 ) = Poisson(N |µS(1+τ1α1 +τ 2α2 ))Gauss(0 |α1,1)Gauss(0 |α2,1)

− logL(µ,α1,α̂2 ) − logL(µ,α1, ˆ̂α2 (α1,µ)) Error ellipse V(μ,α) HESSE



-logL(μ,α1,α2) – 1000 events

Wouter Verkerke, NIKHEF 

− logL(a,b, ĉ)

− logL(a,b, ˆ̂c(a,b))

Error ellipse
from HESSE

Slice in -logL

Profile likelihood



-logL(μ,α1,α2) – 10.000 events

Wouter Verkerke, NIKHEF 

− logL(a,b, ĉ)

− logL(a,b, ˆ̂c(a,b))

Error ellipse
from HESSE

Slice in -logL

Profile likelihood

Note that PLL
contours don’t

change between 1K
and 10k!



-logL(μ,α1,α2) – 100.000 events

Wouter Verkerke, NIKHEF 

− logL(a,b, ĉ)

− logL(a,b, ˆ̂c(a,b))

Error ellipse
from HESSE

Slice in -logL

Profile likelihood

Note that PLL
contours don’t

change between 10K
and 100k close to min.!
(but onset of fit failures

further away…)



-logL(μ,α1,α2) – 1.000.000 events

Wouter Verkerke, NIKHEF 

− logL(a,b, ĉ)

− logL(a,b, ˆ̂c(a,b))

Error ellipse
from HESSE

Slice in -logL

Profile likelihood

Note that PLL
contours don’t

change between 100K
and 1M close to min.!

(but further increase of fit 
failures further away…) HESSE WARNING: 

Matrix not positive definite



Conclusions on strong correlations

• MINUIT can handle strong correlations very well, but at some 
point algorithm breaks down

– Notably HESSE will fail when ratio of weakest-to-strongest eigenvalue < 10-6

• Diagnostic of the existence of strong correlations can be difficult
– In simple models (Ex 1) this is reflected correlation coefficients

– In more complex models (Ex 2) this may not show at all in the correlation 
coefficients because strong ‘N-point correlations’ may still project out to 
modest 2-point correlations (i.e. the usual Pearson correlation coefficients)

– Better diagnostic tools is eigenvalues of Hessian matrix before inversion,
but not (yet) available in Minuit2 [ I am discussing this with ROOT team ]

• Solution: consider to simplify model: 
– If two NPs represent conceptually distinct systematic uncertainties, but their 

effect on the likelihood is virtually identical, then there is effectively a redundant 
degree of freedom. You can eliminate one

Wouter Verkerke, NIKHEF



Other likelihood pathologies

• Template morphing algorithms can introduce various other 
pathologies in the likelihood that cause MINUIT to fail

– We’ve already seen some of them

• Kinks & Multiple minima
– Caused by (among others) template morphing with piece-wise linear 

interpolation and morphing of (low-statistics) template distributions where MC 
statistical effects are larger than systematic effect 

Wouter Verkerke, NIKHEF



Limitations of piece-wise linear interpolation

• Bin-by-bin interpolation looks spectacularly easy and simple, 
but be aware of its limitations

– Same example, but with larger ‘mean shift’ between templates

Wouter Verkerke, NIKHEF

Note double peak structure around |α|=0.5



Non-linear interpolation options

• Piece-wise linear interpolation leads to kink in response functions that 
may result in pathological likelihood functions

• A variety of other interpolation options exist that improve this
– Parabolic interpolation/linear extrapolation (but causes shift of minimum)

– Polynomial interpolation [orders 1,2,4,6]/linear extrapolation (order 1 term allows
for asymmetric modeling of templates)

Wouter Verkerke, NIKHEF

L(α>0) predicts α<0 L(α<0) predicts α>0



Non-linear interpolation options

• Comparison of common interpolation options

Wouter Verkerke, NIKHEF



Other likelihood pathologies

• Effects of likelihood pathologies
– Numerical noise and ‘jumping’ of profile likelihoods

– Example NP (profile) likelihood scan of an ATLAS Higgs trial model

Wouter Verkerke, NIKHEF

Plain likelihood scanProfile likelihood scan

− logL(µ, ˆ

θ )− logL(µ, ˆ̂


θ (µ))

Jump to another minimum solution
in one of the profiled θ parameters

Jitter/noise



Other likelihood pathologies

• Another effect of likelihood pathologies is that calculation of 
derivatives and notably the Hessian from either FDP or HESSE 
matrix become inaccurate

– Slows down minimization

– Can blow up EDM calculation à no convergence

• Red flags: EDM estimates that don’t decrease ~monotonically
– Only possible in Minuit2 (Minuit1 does not report EDM per step)

• Solutions: simplify model: eliminate nuisance parameters that 
suffer from dominant MC statistical effects (causing multiple 
minima, kinks etc…)

Wouter Verkerke, NIKHEF

VariableMetric: start iterating until Edm is < 0.001
VariableMetric: Initial state   - FCN =  -289.1204081677 Edm =      46.0713 NCalls =   1826
VariableMetric: Iteration #   1 - FCN =  -299.3073097602 Edm =      9.18415 NCalls =   2226
VariableMetric: Iteration #   2 - FCN =  -304.9468725143 Edm =      2.22698 NCalls =   2624
VariableMetric: Iteration #   3 - FCN =  -306.3323972775 Edm =      1.43793 NCalls =   3016
VariableMetric: Iteration #   4 - FCN =   -307.199970017 Edm =     0.615574 NCalls =   3410
VariableMetric: Iteration #   5 - FCN =  -307.6493784582 Edm =     0.352904 NCalls =   3804
VariableMetric: Iteration #   6 - FCN =  -307.8960954798 Edm =    0.0749124 NCalls =   4196
VariableMetric: Iteration #   7 - FCN =  -307.9549184882 Edm =     0.298047 NCalls =   4588
VariableMetric: Iteration #   8 - FCN =  -308.0068371877 Edm =      3.40473 NCalls =   4980



Other likelihood pathologies

• Note that pathologies can affect calculation of V via 
iterative DFP updating and Hessian inversion differently

• A real-life example of complex likelihood fit where DFP estimate is 
strongly affected by likelihood pathologies

• But other likelihood pathologies can affect Hessian inversion more

V from Davidon-Fletcher-Powell V from inversion of Hessian

Many spurious large correlations



Summary

• A variety of pathological features in likelihood models can interfere 
with minimization

– Strong correlations

– Kinks

– Multiple minima

– ‘Forbidden regions’ where likelihood is not defined

• Problems affect various steps of the minimization process
– Understanding these effects requires basic understanding of the minimization 

algorithms and strategies

• Solutions usually involve simplifications of models

Wouter Verkerke, NIKHEF



Wouter Verkerke, NIKHEF

Diagnostics II:
Overconstraining &
choices in modeling 
parametrization
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Understanding profile likelihood fits

• The previous section discussed technical diagnostics of profile 
likelihood fits 

– “Why doesn’t my fit converge”?

• The next level of diagnostics is on the interpretation level
– “Do my fit results make sense”?

– “What part of the likelihood model is measuring what?”

Wouter Verkerke, NIKHEF



Being a good physicist – Understand your model!

• Full (profile) likelihood treats physics and subsidiary measurement 
on equal footing

• Our mental picture:

• Is this picture (always) correct?

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Physics measurement Subsidiary measurement

“measures s” “measures α”

“dependence on α
weakens inference on s”



Understanding your model – what constrains your NP

• The answer is no – not always! Your physics measurement
may in some circumstances constrain α better than your 
subsidiary measurement.

• Doesn’t happen in Poisson counting example 
– Physics likelihood has no information to distinguish effect of s from effect of α

• But if physics measurement is based on a distribution or 
comprises multiple distributions this is well possible 

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Physics measurement Subsidiary measurement



Understanding your model – what constrains your NP

• A case study – measuring jet multiplicity (3j,4j,5j)

• Signal mildly peaks in 4j bin, sits on top of a falling background

Wouter Verkerke, NIKHEF

L(

N |µ,αJES ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1)

Effect of changing µEffect of changing αJES



Understanding your model – what constrains your NP

• Now measure (μ,α) from data – 80 events

• Is this fit OK?
– Effect of JES uncertainty propagated in to μ via response modeling in 

likelihood. Increases total uncertainty by about a factor of 2
– Estimated uncertainty on α is not precisely 1, as one would expect

from unit Gaussian subsidiary measurement…  
Wouter Verkerke, NIKHEF

µ̂ =1.0± 0.37

α̂ = 0.01± 0.83

Estimators of
μ, α correlated
due to similar

response in physics
measurement

Uncertainty
on μ with/without 
effect of JES



Understanding your model – what constrains your NP

• The next year – 10x more data  (800 events)
repeat measurement with same model

• Is this fit OK?
– Uncertainty of JES NP much reduced w.r.t. subsidiary meas. (α = 0 ± 1)

– Because the physics likelihood can measure it better than the subsidiary 
measurement (the effect of μ, α are sufficiently distinct that both can be 
constrained at high precision) Wouter Verkerke, NIKHEF

µ̂ = 0.90± 0.13

α̂ = −0.23± 0.31

Estimators of
μ, α correlated
due to similar

response in physics
measurement



Understanding your model – what constrains your NP

• Is it OK if the physics measurement constrains NP associated with 
a systematic uncertainty better than the designated subsidiary 
measurement?

– From the statisticians point of view: no problem, simply a product of two 
likelihood that are treated on equal footing ‘simultaneous measurement’

– From physicists point of view? Measurement is only valid is model is valid.

• Is the probability model of the physics measurement valid?

• Reasons for concern
– Incomplete modeling of systematic uncertainties,

– Or more generally, model insufficiently detailed 

Wouter Verkerke, NIKHEF

L(

N |µ,αJES ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1)



Understanding your model – what constrains your NP

• What did we overlook in the example model?
– The background rate has no uncertainty!

• Insert modeling of background uncertainty

• With improved model
accuracy estimated
uncertainty on both
αJES, μ goes up again…

– Inference weakened
by new degree of
freedom αbkg

– NB αJES estimate still
deviates a bit from normal
distribution estimate… Wouter Verkerke, NIKHEF

L(

N |µ,αJES,αbkg ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ⋅ rb(αbkg )) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1) ⋅Gauss(0 |αbkg,1)

Background rate
subsidiary measurement

Background rate
response function

µ̂ = 0.93± 0.29

α̂JES = 0.90± 0.70

(α̂bkg =1.36± 0.20)



Understanding your model – what constrains your NP

• Lesson learned: if probability model of a physics measurement is 
insufficiently detailed (i.e. flexible) you can underestimate
uncertainties

• Normalized subsidiary measurement provide an excellent 
diagnostic tool

– Whenever estimates of a NP associated with unit Gaussian subsidiary 
measurement deviate from α = 0 ± 1then physics measurement is 
constraining or biases this NP.

• Is ‘over-constraining’ of systematics NPs always bad?
– No, sometimes there are good arguments why a physics measurement can 

measure a systematic uncertainty better than a dedicated calibration 
measurement (that is represented by the subsidiary measurement)

– Example: in sample of reconstructed hadronic top quarks tàbW(qq), the pair 
of light jets should always have m(jj)=mW.  For this special sample of jets it will 
possible to calibrate the JES better than with generic calibration measurement

Wouter Verkerke, NIKHEF



Commonly heard  arguments in discussion on over-constraining

• Overconstraining of a certain systematic is OK “because this is what 
the data tell us”

– It is what the data tells you under the hypothesis that your model is correct. The 
problem is usually in the latter condition

• “The parameter αJES should not be interpreted as Jet Energy Scale 
uncertainty provided by the jet calibration group”

– A systematic uncertainty is always combination of response prescription and one or 
more nuisance parameters uncertainties.

– If you implement the response prescription of the systematic, then the NP in your 
model really is the same as the prescriptions uncertainty 

• “My estimate of αJES = 0 ± 0.4 doesn’t mean that the ‘real’ Jet Energy 
Scale systematic is reduced from 5% to 2%

– It certainly means that in your analysis a 2% JES uncertainty is propagated to the 
POI instead of the “official” 5%.

– One can argue that the 5% shouldn’t apply because your sample is special and can 
be calibrated better by a clever model, but this is a physics argument that should 
be documented with evidence for that (e.g. argument JES in tàbW(qq) decays)

Wouter Verkerke, NIKHEF



Dealing with over-constraining – introducing more NPs

• Some systematic uncertainties are not captured well by one 
nuisance parameter. 

• Written prescription often not clear on number of nuisance 
parameters: 

• Does “the JES uncertainty is 5% for all jets” mean one NP

Je
t E

ne
rg

y 
Sc

ale
 m

isc
ali

br
at

io
n
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αJES

i.e. JES miscalibration is coherent for all jets
à You can calibrate high pT jets with a low pT jet sample

5%



Dealing with over-constraining – introducing more NPs

• Some systematic uncertainties are not captured well by one 
nuisance parameter. 

• Written prescription often not clear on number of nuisance 
parameters: 

• Or does “the JES uncertainty is 5% for all jets” mean 5 NPs?
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Jet pT

i.e. JES miscalibration is not coherent across pT
but still has 5% uncertainty for each pT bin

αJES1
αJES2

αJES3
αJES4

αJES5
5%

5%

5%
5%

5%



Dealing with over-constraining – introducing more NPs

• Some systematic uncertainties are not captured well by one 
nuisance parameter. 

• Written prescription often not clear on number of nuisance 
parameters: 

• If you assume one NP – chances are that your physics Likelihood 
will exploit this oversimplified JES model 
to overconstrain JES for high pT jets!
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i.e. JES miscalibration is coherent for all jets
à You can calibrate high pT jets with a low pT jet sample

5%



Modeling theory uncertainties

• Modeling of systematic uncertainties originating from theory 
sources can pose some extra & thorny problems

Wouter Verkerke, NIKHEF



Modeling theory uncertainties

• Difficulties are not in the modeling procedure, but in quantifying what 
precisely we know

• Difficulty 1 – What is distribution of the subsidiary measurement?

• Easy example – Top cross-section uncertainty

• Difficult example – Factorization scale uncertainty

Wouter Verkerke, NIKHEF

Lfull (s,σ tt ) = Poisson(NSR | s+εtt ⋅σ tt ) ⋅Gauss( !σ tt |σ tt, 0.08)

Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )

“XS Uncertainty  is 8%” à Gaussian subsidiary with 8% uncertainty
(because XS uncertainty is ultimately from a measurement)  

“Vary Factorization Scale by x0.5 and x” à F(α) is probably not Gaussian
So what distribution was meant?



Modeling theory uncertainties

• Difficult example – Factorization scale uncertainty

• Difficult arises from imprecision in original prescription.
– NB: Issue is physics question, not a statistical procedure question. Answer will also 

need to be motivated with physics arguments

• Note that you always assume some distribution (even if you do error 
propagation) à Profiling approach requires you to write
it out explicitly. This is good!

Wouter Verkerke, NIKHEF

Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )

“Vary Factorization Scale by x0.5 and x” à F(α) is probably not Gaussian
So what distribution was meant?



Modeling theory uncertainties

• Difficulty 2 – What are the parameters of the systematic model?

• Easy example – b-quark mass uncertainty

– One parameter: the quark massà Clearly described and connected to the 
underlying theory model

• Difficult example – Hadronization/Fragmentation model
– Source uncertainty: you run different showering MC generators (e.g. HERWIG 

and PYTHIA) and you observe you get different results from your physics analysis

– How do you model this in the likelihood?

Wouter Verkerke, NIKHEF

Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )MB MB MB



Modeling theory uncertainties

• Worst type of ‘theory’ uncertainty are prescriptions that result in 
an observable difference that cannot be ascribed to clearly 
identifiable effects. Examples of such systematic prescriptions

– Evaluate measurement with Herwig and Pythia showering Monte Carlos and 
take the difference as systematic uncertainty

– Evaluate measurement with CTEQ and MRST parton density functions and 
take the difference as systematic uncertainty.

• I call these ‘2-point systematics’. 
– You have the technical means to evaluate (typically) two known different 

configurations, but reasons for underlying difference are not clearly identified.

Wouter Verkerke, NIKHEF



Specific issue with theory uncertainties

• It is difficult to define rigorous statistical procedures to deal with 
such 2-point uncertainties. So you need to decide

• If their estimated effect is small, you can pragmatically ignore 
these lack of proper knowledge and ‘just do something 
reasonable’ to model these effects in a likelihood

• If their estimated effect is large, your leading uncertainty is related 
to an effect that largely ununderstood effect. This is bad for 
physics reasons! 

– You should go back to the drawing board and design a new measurement 
that is less sensitive to these issues.

– E.g. If your inclusive cross-section uncertainty is dominated by fullàfiducial
acceptance uncertainty due to Herwig/Pythia issue, shouldn’t you rather be 
publishing the fiducial cross-section?

Wouter Verkerke, NIKHEF



Specific issues with theory uncertainties

• Pragmatic solutions to likelihood modeling of ‘2-point systematics’

• Final solution will need to follow usual pattern

• Defining an (empirical) response 
function b(α) is the easy part

• A thorny question remains: 
What is the subsidiary measurement for α?
This should reflect you current knowledge on α.  

Wouter Verkerke, NIKHEF

L(N | s,α) = Poisson(N | s+ b(α)) ⋅SomePdf (0 |α)
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Specific issues with theory uncertainties

• Subsidiary measurement of a theoretical 2-point uncertainty 
effectively quantifies the ‘knowledge’ on these models

– Extra difficult to make meaningful statement about this, since meaning of 
parameter is not well embedded in underlying theory model

– But again, all procedures need to assume some distribution… Profiling requires 
you to spell it out

• Some options and their effects

Wouter Verkerke, NIKHEF
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Two-point systematics on non-counting measurements

• In a counting experiment you can argue 
that for every conceivable background rate 
there exists a value of the NP that 
corresponds to that rate

– Even if ‘SHERPA’ was never used to construct
the model, you can still represent its outcome

• This is not generally true for distributions.
A shape interpolation between 
‘pythia’ and ‘herwig’ does not
necessarily describe shape of 
‘sherpa’ (or of Nature!)

– Fundamental modeling
problem!

– You may need more
parameters… 

Wouter Verkerke, NIKHEF
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Dealing with ‘two-point’ uncertainties

• Key issue: How many d.o.f. does you systematic uncertainty 
have?

• Especially important in the discussion to what extent a two-point 
response function can be over-constrained.

– A result α2p = 0.5 ± 1 has ‘reasonable’ odds to cover the ‘true generator’ 
assuming all generators are normally scattered in an imaginary ‘generator 
space’

Wouter Verkerke, NIKHEF
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Dealing with ‘two-point’ uncertainties

• Key issue: How many d.o.f. does you systematic uncertainty 
have?

• Especially important in the discussion to what extent a two-point 
response function can be over-constrained.

– Does a hypothetical overconstrained result α2p = 0.1 ± 0.2 ‘reasonably’ cover 
the generator model space?

Wouter Verkerke, NIKHEF
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Summary

• The key challenge for experimental physicist is to construct the 
likelihood function describing his analysis/experiment

• ‘Profiling’ is a technique allows to effectively incorporate all model 
uncertainties that are traditionally thought of as ‘systematic 
uncertainties’ 

– By empirically parametrizing the response of the full simulation chain

• Profiling enable used of all fundamental statistical inference 
techniques (frequentist/Bayesian), which start with the likelihood

– A ‘profile likelihood’ allows execution of fundamental statistical techniques 
without cutting corners

– Confidence intervals with guaranteed coverage, Bayesian posteriors, etc

Wouter Verkerke, NIKHEF



Summary

• Profile likelihood implements and diagnoses many analysis issues that 
are missed by naïve approaches to systematic uncertainties (e.g. 
error prop)

– “Posterior correlation” – Effect of correlations between systematics introduced by 
features of the physics measurement

– “Overconstraining” – Either input magnitude was too conservative, or response 
model for systematic uncertainty was too simple (you’d like to know in either case)

– “Imprecisely specified systematics” – Profiling requires physicist to explicit spell out 
precise model that is used

• But is important to run diagnostics on a profile likelihood model
– Default interpretation in case of overconstraining is ‘input uncertainty too 

conservative’, which may lead to underestimated uncertainties if simplistic 
response model was the real problem

• ‘Profiling’ is the best way we know to incorporate systematic 
uncertainties is probability models

Wouter Verkerke, NIKHEF



Example of likelihood modeling diagnostics
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Summary

• Diagnostics over NP overconstraining provide powerful insight into 
your analysis model

– An overconstrained NP indicates an externally provided systematic is 
inconsistent with physics measurement

– This may point to either an incorrect response modeling of that uncertainty, to 
result in a genuinely better estimate of the uncertainty

– Solution not always clear-cut, but you should be at least aware of it.

– Note that over-constraining always points to an underlying physics issue
(lack of knowledge, simplistic modeling) à Treat it as a physics analysis 
problem, not as a statistics problem

• Diagnostic power of profile likelihood models highlights one of the 
major shortcomings of the ‘naïve’ strategy of error propagation (as 
discussed in Section 1)

– Physics measurement can entangle in non-trivial ways with systematic 
uncertainties

Wouter Verkerke, NIKHEF
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Summary

• Modelling of systematic uncertainties in the likelihood (‘profiling’) 
is the best we know to incorporate systematic uncertainties in 
rigorous statistical procedures

– Profiling requires more a ‘exact’ specification of what a systematic uncertainty 
means that traditional prescritions à this is good thing, it makes you think 
about (otherwise hidden) assumption

– It’s important to involve the ‘author’ of uncertainty prescription in this process, 
as flawed assumptions can be exploited by statistical methods to arrive at 
unwarranted conclusions

– Systematic uncertainties that have conceptual fuzziness (‘pythia-vs-herwig’)
are difficult to capture in the likelihood, but this is a reflection of an underlying 
physics problem

– Good software tools exist to simplify the process of likelihood modeling
– It’s important to carefully diagnose your profile likelihood models for both 

technical and interpretational problems (‘over-constraining’) 

Wouter Verkerke, NIKHEF


