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In this section...

Standard Model particle content

Klein-Gordon equation

Antimatter

Interaction via particle exchange

Virtual particles
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The Standard Model
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Plus antileptons and antiquarks

Spin-1 bosons Mass ( GeV/c2)

Gluon g 0 Strong force
Photon γ 0 EM force
W and Z bosons W±,Z 91.2, 80.3 Weak force

Spin-0 bosons
Higgs h 125 Mass generation
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Theoretical Framework

Macroscopic Microscopic

Slow Classical Mechanics Quantum Mechanics

Fast Special Relativity Quantum Field Theory

The Standard Model is a collection of related Gauge Theories which are
Quantum Field Theories that satisfy Local Gauge Invariance.

Electromagnetism: Quantum Electrodynamics (QED)
1948 Feynman, Schwinger, Tomonaga (1965 Nobel Prize)

Electromagnetism + Weak: Electroweak Unification
1968 Glashow, Weinberg, Salam (1979 Nobel Prize)

Strong: Quantum Chromodynamics (QCD)
1974 Politzer, Wilczek, Gross (2004 Nobel Prize)
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The Schrödinger Equation

To describe the fundamental interactions of particles we need a theory of
Relativistic Quantum Mechanics

Schrödinger Equation for a free particle Êψ =
p̂2

2m
ψ

with energy and momentum operators Ê = i
∂

∂t
, p̂ = −i∇∇∇

(ℏ = 1 natural units)

giving i
∂ψ

∂t
= − 1

2m
∇∇∇2ψ

which has plane wave solutions: ψ(r⃗ , t) = Ne−i(Et−p⃗.r⃗)

1st order in time derivative
2nd order in space derivatives

Not Lorentz Invariant!

Schrödinger equation cannot be used to describe the physics of relativistic
particles.
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Klein-Gordon Equation

Use the KG equation to describe the physics of relativistic particles.

From Special Relativity: E 2 = p2 +m2

use energy and momentum operators Ê = i
∂

∂t
, p̂ = −i∇∇∇

giving − ∂2ψ

∂t2
= −∇∇∇2ψ +m2ψ

∂2ψ

∂t2
= (∇∇∇2 −m2)ψ Klein-Gordon

Equation

Second order in both space and time derivatives ⇒ Lorentz invariant.

Plane wave solutions ψ(r⃗ , t) = Ne−i(Et−p⃗.r⃗)

but this time requiring E 2 = p⃗ 2 +m2, allowing E = ±
√

|p⃗|2 +m2

Negative energy solutions required to form complete set of eigenstates.
⇒ Antimatter
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Antimatter and the Dirac Equation

In the hope of avoiding negative energy solutions, Dirac sought a linear
relativistic wave equation:

i
∂ψ

∂t
= (−iα⃗.∇⃗∇∇ + βm)ψ

α⃗ and β are appropriate 4x4 matrices.

ψ is a column vector “spinor” of four wavefunctions.

Two of the wavefunctions describe the states of a fermion, but the other two
still have negative energy.

Dirac suggested the vacuum had all negative energy states filled. A hole in the
negative energy “sea” could be created by exciting an electron to a positive
energy state. The hole would behave like a positive energy positive charged
“positron”. Subsequently detected.

However, this only works for fermions...

We now interpret negative energy states differently...
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Antimatter and the Feynman-Stückelberg Interpretation

Consider the negative energy solution in which a negative energy particle
travels backwards in time.

e−iEt ≡ e−i(−E )(−t)

Interpret as a positive energy antiparticle travelling forwards in time.

Then all solutions can be used to describe physical states with positive energy,
going forward in time.

e.g.

time−−→

e+e− annihilation

γ

e−

e+
pair production

γ

e+

e−

time−−→

All quantum numbers carried into a vertex by the e+ are the same as if it is
regarded as an outgoing e−, or vice versa.
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Antimatter and the Feynman-Stückelberg Interpretation

e−

γ

e−

e−

γ

time−−→
The interpretation here is easy. The
first photon emitted has less energy
than the electron it was emitted
from. No need for “anti-particles”
or negative energy states.

e+/e−

γ

e−

e−

γ

time−−→
The emitted photon has more
energy than the electron that
emitted it. Either view the top
vertex as “emission of a negative
energy electron travelling
backwards in time” or “absorption
of a positive energy positron
travelling forwards in time”.

Prof. Alex Mitov 4. The Standard Model 9



Interaction via Particle Exchange

Consider two particles, fixed at r⃗1 and r⃗2, which exchange a particle of mass m.

  

S
p

ac
e

Time

1

2

State i State j State i

pµ = (E , p⃗)

E = Ej − Ei

Calculate the shift in energy of state i due to this exchange (using second
order perturbation theory):

∆Ei =
∑
j ̸=i

⟨i |H |j⟩⟨j |H |i⟩
Ei − Ej

Sum over all possible states j
with different momenta

where ⟨j |H |i⟩ is the transition from i to j at r⃗1
where ⟨i |H |j⟩ is the transition from j to i at r⃗2
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Interaction via Particle Exchange
Consider ⟨j |H |i⟩ (transition from i → j by emission of m at r⃗1)

ψi = ψ1ψ2 Original 2 particles

ψj = ψ1ψ2ψ3 ψ3 = N e−i(Et−p⃗.r⃗)

normalise ψ∗
1ψ1 = ψ∗

2ψ2 = ψ∗
3ψ3 = 1ψ3 represents a free particle with pµ = (E , p⃗)

Let g be the probability of emitting m at r1 g/
√
2E is required on dimensional grounds,

c.f. AQP vector potential of a photon.

⟨j |H |i⟩ =

∫
d3r⃗ ψ∗

1ψ
∗
2ψ

∗
3

g√
2E

ψ1ψ2 δ
3(r⃗ − r⃗1)

=
g√
2E

Nei(Et−p⃗.r⃗1)

Dirac δ function∫
d3r⃗δ3 (r⃗ − r⃗1)

= 1 for r⃗ = r⃗1

= 0 for r⃗ ̸= r⃗1

Similarly ⟨i |H |j⟩ is the transition from j to i at r⃗2

⟨i |H |j⟩ = g√
2E

Ne−i(Et−p⃗.r⃗2)

Shift in energy state ∆E 1→2
i =

∑
j ̸=i

g 2

2E

N2eip⃗.(r⃗2−r⃗1)

Ei − Ej
=

∑
j ̸=i

g 2N2eip⃗.(r⃗2−r⃗1)

−2E 2
(E = Ej−Ei)
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Interaction via Particle Exchange
Putting the pieces together
Different states j have different momenta p⃗ for the exchanged particle.
Therefore sum is actually an integral over all momenta:

∆E 1→2
i =

∫
g 2N2eip⃗.(r⃗2−r⃗1)

−2E 2
ρ(p) dp =

∫
g 2eip⃗.(r⃗2−r⃗1)

−2E 2

1

L3

(
L

2π

)3

p2 dp dΩ

N =

√
1

L3
, ρ(p) =

(
L

2π

)3

p2 dΩ
= −g 2

(
1

2π

)3 ∫
eip⃗.(r⃗2−r⃗1)

2E 2
p2 dp dΩ

E 2 = p2 +m2

The integral can be done by taking the z-axis along r⃗ = r⃗2 − r⃗1

Then p⃗.r⃗ = pr cos θ and dΩ = 2π d(cos θ)

∆E 1→2
i = − g 2

2(2π)2

∫ ∞

0

p2

p2 +m2

eip⃗.r⃗ − e−ip⃗.r⃗

ipr
dp (see Appendix D)

Write this integral as one half of the integral from −∞ to +∞, which can be
done by residues giving

∆E 1→2
i = − g 2

8π

e−mr

r
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Interaction via Particle Exchange

Final stage
Can also exchange particle from 2 to 1:

  

S
p

ac
e

Time

1

2

State i State j State i

Get the same result: ∆E 2→1
i = − g 2

8π

e−mr

r

Total shift in energy due to particle exchange is

∆Ei = − g 2

4π

e−mr

r
Yukawa Potential

Attractive force between two particles, decreasing exponentially with range r .

Prof. Alex Mitov 4. The Standard Model 13



Yukawa Potential

Hideki Yukawa
1949 Nobel Prize

V (r) = − g 2

4π

e−mr

r
Yukawa Potential

Characteristic range = 1/m
(Compton wavelength of exchanged particle)

For m → 0, V (r) = − g 2

4πr
infinite range (Coulomb-like)

Yukawa potential with m = 139 MeV/c2 gives a good description of long
range part of the interaction between two nucleons and was the basis for the
prediction of the existence of the pion.
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Scattering from the Yukawa Potential
Consider elastic scattering (no energy transfer)

  

p⃗i

p⃗f p⃗

qμ
=(E , p⃗)

q2
=E2

−|p⃗|2

q2  is invariant

“Virtual Mass”

Born Approximation Mfi =

∫
eip⃗.r⃗V (r) d3r⃗

Yukawa Potential V (r) = − g 2

4π

e−mr

r

Mfi = − g 2

4π

∫
e−mr

r
eip⃗.r⃗ d3r⃗ = − g 2

|p⃗|2 +m2

The integral can be done by choosing the z-axis along r⃗ , then p⃗.r⃗ = pr cos θ
and d3r⃗ = 2πr 2 dr d(cos θ)

For elastic scattering, qµ = (0, p⃗), q2 = −|p|2 and exchanged massive particle
is highly “virtual”

Mfi =
g 2

q2 −m2
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Virtual Particles

Forces arise due to the exchange of unobservable virtual particles.

The effective mass of the virtual particle, q2, is given by

q2 = E 2 − |p⃗|2

and is not equal to the physical mass m, i.e. it is off-shell mass.

The mass of a virtual particle can be +ve, -ve or imaginary.

A virtual particle which is off-mass shell by amount ∆m can only exist for
time and range

t ∼ ℏ
∆mc2

=
1

∆m
, range =

ℏ
∆mc

=
1

∆m
ℏ = c = 1

If q2 = m2, the the particle is real and can be observed.
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Virtual Particles
For virtual particle exchange, expect a contribution to the matrix element of

Mfi =
g 2

q2 −m2

where g Coupling constant

g 2 Strength of interaction

m2 Physical (on-shell) mass

q2 Virtual (off-shell) mass

1
q2−m2 Propagator

Qualitatively: the propagator is inversely proportional to how far the particle is
off-shell. The further off-shell, the smaller the probability of producing such a
virtual state.

For m → 0; e.g. single γ exchange, Mfi = g 2/q2

For q2 → 0, very low momentum transfer EM scattering (small angle)
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Virtual Particles Example
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Summary

SM particles: 12 fermions, 5 spin-1 bosons, 1 spin-0 boson.

Need relativistic wave equations to describe particle interactions.
Klein-Gordon equation (bosons), Dirac equation (fermions).

Negative energy solutions describe antiparticles.

The exchange of a massive particle generates an attractive force between
two particles.

Yukawa potential V (r) = −g 2

4π

e−mr

r

Exchanged particles may be virtual.

Problem Sheet: q.10

Up next...
Section 5: Feynman Diagrams
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