7. QCD Particle and Nuclear Physics

Prof. Alex Mitov

Prof. Alex Mitov

7. QCD

▲□▶▲圖▶▲壹▶▲壹▶ 壹 少♀?

- The strong vertex
- Colour, gluons and self-interactions
- QCD potential, confinement
- Hadronisation, jets
- Running of α_s
- Experimental tests of QCD

QCD

Quantum Electrodynamics is the quantum theory of the electromagnetic interaction.

- mediated by massless photons
- photon couples to electric charge
- strength of interaction: $\langle \psi_{\rm f} | \hat{H} | \psi_{\rm i} \rangle \propto \sqrt{\alpha}$ $\alpha = \frac{e^2}{4\pi} = \frac{1}{137}$

Quantum Chromodynamics is the quantum theory of the strong interaction.

- mediated by massless gluons
- gluon couples to "strong" charge
- only quarks have non-zero "strong" charge, therefore only quarks feel the strong interaction.
- strength of interaction: $\langle \psi_{\rm f} | \hat{H} | \psi_{\rm i} \rangle \propto \sqrt{\alpha_s}$ $\alpha_s = \frac{g_s^2}{4\pi} \sim 1$

The Strong Vertex

Basic QCD interaction looks like a stronger version of QED:

- The coupling of the gluon, g_s , is to the "strong" charge.
- Energy, momentum, angular momentum and charge always conserved.
- QCD vertex never changes quark flavour
- QCD vertex always conserves parity

Colour

QED:

• Charge of QED is electric charge, a conserved quantum number

QCD:

- Charge of QCD is called " colour "
- colour is a conserved quantum number with 3 values labelled red, green and blue.
 - Quarks carrycolourrbgAntiquarks carryanti- colour \overline{r} \overline{b} \overline{g}
- Colorless particles either have
 - no colour at all e.g. leptons, γ , W, Z and do not interact via the strong interaction
 - or equal parts r, b, g e.g. meson $q\bar{q}$ with $\frac{1}{\sqrt{3}}(r\bar{r} + b\bar{b} + g\bar{g})$, baryon $q\bar{q}q$ with rgb
- gluons do not have equal parts r, b, g, so carry colour (e.g. rr
 , see later)

QCD as a gauge theory

Recall QED was invariant under gauge symmetry

 $\psi \to \psi' = \mathrm{e}^{\mathrm{i} q \alpha(\vec{r}, t)} \psi$

• The equivalent symmetry for QCD is invariance under (non-examinable) $\psi \rightarrow \psi' = e^{ig\vec{\lambda}.\vec{\Lambda}(\vec{r},t)}\psi$

an "SU(3)" transformation (λ are eight 3x3 matrices).

- Operates on the colour state of the quark field a "rotation" of the colour state which can be different at each point of space and time.
- Invariance under SU(3) transformations \rightarrow eight massless gauge bosons, gluons (eight in this case). Gluon couplings are well specified.
- Gluons also have self-couplings, i.e. they carry colour themselves...

Gluons

Gluons are massless spin-1 bosons, which carry the colour quantum number (unlike γ in QED which is charge neutral).

Consider a red quark scattering off a blue quark. Colour is exchanged, but always conserved (overall and at each vertex).

Expect 9 gluons (3x3): $r\bar{b} r\bar{g} g\bar{r} g\bar{b} b\bar{g} b\bar{r} r\bar{r} b\bar{b} g\bar{g}$

However: Real gluons are orthogonal linear combinations of the above states. The combination $\frac{1}{\sqrt{3}}(r\bar{r} + b\bar{b} + g\bar{g})$ is colourless and does not participate in the strong interaction. \Rightarrow 8 coloured gluons

Conventionally chosen to be (all orthogonal):

$$r\bar{b} \ r\bar{g} \ g\bar{r} \ g\bar{b} \ b\bar{g} \ b\bar{r} \ \frac{1}{\sqrt{2}}(r\bar{r}-b\bar{b}) \ \frac{1}{\sqrt{6}}(r\bar{r}+b\bar{b}-2g\bar{g})$$

Prof. Alex Mitov

Gluon Self-Interactions

QCD looks like a stronger version of QED. However, there is one big difference and that is gluons carry colour charge.

 \Rightarrow Gluons can interact with other gluons

Example: Gluon-gluon scattering $gg \rightarrow gg$

 $\int_{g}^{g} \frac{\partial g}{\partial q} \frac{\partial g}$

▶ < @ ▶ < E ▶ < E ▶ < E < 9 <</p>

QCD Potential

QED Potential: $V_{\text{QED}} = -\frac{\alpha}{r}$

QCD Potential: $V_{\text{QCD}} = -C \frac{\alpha_s}{r}$

At short distances, QCD potential looks similar, apart from the "colour factor" C.

For $q\bar{q}$ in a colourless state in a meson, C = 4/3For qq in a colourless state in baryon, C = 2/3

Note: the colour factor C arises because more than one gluon can participate in the process $q \rightarrow qg$. Obtain colour factor from averaging over initial colour states and summing over final/intermediate colour states.

Confinement

Never observe single free quarks or gluons

- Quarks are always confined within hadrons
- This is a consequence of the strong interaction of gluons.

Qualitatively, compare QCD with QED:

Self interactions of the gluons squeezes the lines of force into a narrow tube or string. The string has a "tension" and as the quarks separate the string stores potential energy.

Energy stored per unit length in field \sim constant $V(r) \propto r$ Energy required to separate two quarks is infinite. Quarks always come in combinations with zero net colour charge \Rightarrow confinement.

How Strong is Strong?

QCD potential between quark and antiquark has two components:

- Short range, Coulomb-like term: $-\frac{4}{3}\frac{\alpha_s}{r}$
- Long range, linear term: +kr

$$V_{\rm QCD} = -\frac{4\alpha_s}{3r} + kr$$

with $k \sim 1 \; {
m GeV/fm}$

$$F = -\frac{\mathrm{d}V}{\mathrm{d}r} = \frac{4\alpha_s}{3r^2} + k$$

at large r

$$F = k \sim \frac{1.6 \times 10^{-10}}{10^{-15}} \,\mathrm{N} = 160,000 \,\mathrm{N}$$

Equivalent to weight of ${\sim}150$ people

Jets

Consider the $qar{q}$ pair produced in $e^+e^-
ightarrow qar{q}$

As the quarks separate, the potential energy in the colour field ("string") starts to increase linearly with separation. When the energy stored exceeds $2m_q$, new $q\bar{q}$ pairs can be created.

As energy decreases, hadrons (mainly mesons) freeze out

Prof. Alex Mitov

12

Jets

As quarks separate, more $q\bar{q}$ pairs are produced. This process is called hadronisation. Start out with quarks and end up with narrowly collimated jets of hadrons.

Typical $e^+e^- ightarrow qar{q}$ event

The hadrons in a quark(antiquark) jet follow the direction of the original quark(antiquark). Consequently, $e^+e^- \rightarrow q\bar{q}$ is observed as a pair of back-to-back jets.

Nucleon-Nucleon Interactions

- Bound qqq states (e.g. protons and neutrons) are colourless (colour singlets)
- They can only emit and absorb another colour singlet state, i.e. not single gluons (conservation of colour charge).
- Interact by exchange of pions.
 Example: *pp* scattering (One possible diagram)

- Nuclear potential is Yukawa potential with
- Short range force:

Range
$$= \frac{1}{m_{\pi}} = (0.140 \text{ GeV})^{-1} = 7 \text{ GeV}^{-1} = 7 \times (\hbar c) \text{ fm} = 1.4 \text{ fm}$$

 $V(r) = -\frac{g^2}{4\pi} e^{-m_{\pi}r}$

Prof. Alex Mitov

7. QCD

14

Running of α_s

- α_s specifies the strength of the strong interaction.
- But, just as in QED, α_s is not a constant. It "runs" (i.e. depends on energy).
- In QED, the bare electron charge is screened by a cloud of virtual electron-positron pairs.
- In QCD, a similar "colour screening" effect occurs.

In QCD, quantum fluctuations lead to a cloud of virtual $q\bar{q}$ pairs.

One of many (an infinite set) of such diagrams analogous to those for QED.

In QCD, the gluon self-interactions also lead to a cloud of virtual gluons.

One of many (an infinite set) of such diagrams. No analogy in QED, photons do not carry the charge of the interaction.

7. QCD

Colour Anti-Screening

- Due to gluon self-interactions bare colour charge is screened by both virtual quarks and gluons.
- The cloud of virtual gluons carries colour charge and the effective colour charge decreases at smaller distances (high energy)!
- Hence, at low energies, α_s is large \rightarrow cannot use perturbation theory.
- But at high energies, α_s is small. In this regime, can treat quarks as free particles and use perturbation theory \rightarrow Asymptotic Freedom.

Scattering in QCD

Example: High energy proton-proton scattering.

Upper points: Geiger and Marsden data (1911) for the elastic scattering of a particles from gold and silver foils.

Lower points: angular distribution of quark jets observed in *pp* scattering at $q^2 = 2000 \text{ GeV}^2$.

Both follow the Rutherford formula for elastic scattering.

Prof. Alex Mitov

7. QCD

Scattering in QCD

Example: pp vs π^+p scattering

Calculate ratio of $\sigma(pp)_{\text{total}}$ to $\sigma(\pi^+p)_{\text{total}}$

QCD does not distinguish between quark flavours, only colour charge of quarks matters.

At high energy ($E \gg$ binding energy of quarks within hadrons), ratio of $\sigma(pp)_{\text{total}}$ and $\sigma(\pi^+p)_{\text{total}}$ depends on number of possible quark-quark combinations.

Predict:

$$\frac{\sigma(\pi p)}{\sigma(pp)} = \frac{2 \times 3}{3 \times 3} = \frac{2}{3}$$
 Experiment:
 $\frac{\sigma(\pi p)}{\sigma(pp)} = \frac{24 \text{ mb}}{38 \text{ mb}} \sim \frac{2}{3}$

 Prof. Alex Mitov
 7. QCD
 18

QCD in e^+e^- Annihilation

 e^+e^- annihilation at high energies provides direct experimental evidence for colour and for gluons.

Start by comparing the cross-sections for $e^+e^- o \mu^+\mu^-$ and $e^+e^- o qar q$

If we neglect the mass of the final state quarks/muons then the only difference is the charge of the final state particles: 2 - 1

$$Q_{\mu} = -1$$
 $Q_{q} = +\frac{2}{3}, -\frac{2}{3}$

7. QCD

Evidence for Colour

Consider the ratio

$$R = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$

For a single quark of a given colour $R = Q_q^2$

However, we measure $\sigma(e^+e^- \rightarrow \text{hadrons})$ not just $\sigma(e^+e^- \rightarrow u\bar{u})$. A jet from a *u*-quark looks just like a jet from a *d*-quark etc. Thus, we need to sum over all available flavours (u, d, c, s, t, b) and colours (r, g, b):

$$R = 3\sum_{i} Q_{i}^{2} \qquad (3 \text{ colours})$$

where the sum is over all quark flavours (*i*) that are kinematically accessible at centre-of-mass energy, \sqrt{s} , of the collider.

Evidence for Colour

Expect to see steps in R as energy is increased.

$$R = 3\sum_{i}Q_{i}^{2}$$

Energy		Expected ratio R
$\sqrt{s} > 2m_s,$	$\sim 1~{ m GeV}$	$3\left(\frac{4}{9}+\frac{1}{9}+\frac{1}{9}\right) = 2$ uds
$\sqrt{s} > 2m_c,$	$\sim 4~{ m GeV}$	$3\left(\frac{4}{9} + \frac{1}{9} + \frac{1}{9} + \frac{4}{9}\right) = 3\frac{1}{3}$ <i>udsc</i>
$\sqrt{s} > 2m_b,$	$\sim 10~{ m GeV}$	$3\left(\frac{4}{9} + \frac{1}{9} + \frac{1}{9} + \frac{4}{9} + \frac{1}{9}\right) = 3\frac{2}{3}$ <i>udscb</i>
$\sqrt{s} > 2m_t,$	$\sim 350~{ m GeV}$	$3\left(\frac{4}{9} + \frac{1}{9} + \frac{1}{9} + \frac{4}{9} + \frac{1}{9} + \frac{4}{9}\right) = 5$ <i>udscbt</i>

7. QCD

500

メロト メタト メミト メミト 二日

Evidence for Colour

$$R = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$

- *R* increases in steps with \sqrt{s} Strong evidence for colour
- $\sqrt{s} < 11 \text{ GeV}$ region observe bound state resonances: charmonium $(c\bar{c})$ and bottomonium $(b\bar{b})$
- $\sqrt{s} > 50 \text{ GeV}$ region observe low edge of Z resonance $\Gamma \sim 2.5 \text{ GeV}$.

7. QCD

ヘロト ヘ戸ト ヘヨト ヘヨト

Experimental Evidence for Colour

$$R = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$

• The existence of $\Omega^{-}(sss)$

The $\Omega^{-}(sss)$ is a (L = 0) spin-3/2 baryon consisting of three s-quarks.

The wavefunction: $\psi = s \uparrow s \uparrow s \uparrow$

is symmetric under particle interchange. However, quarks are fermions, therefore require an anti-symmetric wave-function, i.e. need another degree of freedom, namely colour, whose wavefunction must be antisymmetric.

$$\psi = (s \uparrow s \uparrow s \uparrow) \psi_{ ext{colour}}$$
 $\psi_{ ext{colour}} = rac{1}{\sqrt{6}} (rgb + gbr + brg - grb - rbg - bgr)$

i.e. need to introduce a new quantum number (colour) to distinguish the three quarks in Ω^- – avoids violation of Pauli's Exclusion Principle.

Drell-Yan process

Need colour to explain cross-section; colours of the annihilating quarks must match to form a virtual photon. Cross-section suppressed by a factor $N_{\rm colour}^{-2}$.

7. QCD

Evidence for Gluons

In QED, electrons can radiate photons. In QCD, quarks can radiate gluons. **Example:** $e^-e^+ \rightarrow q\bar{q}g$

$$M \sim rac{Q_q}{q^2} \sqrt{lpha} \sqrt{lpha} \sqrt{lpha_s}$$

Giving an extra factor of $\sqrt{\alpha_s}$ in the matrix element, i.e. an extra factor of α_s in the cross-section.

In QED we can detect the photons. In QCD, we never see free gluons due to confinement.

Experimentally, detect gluons as an additional jet: 3-jet events.

- Angular distribution of gluon jet depends on gluon spin.

 e^{-}

Evidence for Gluons

JADE event $\sqrt{s} = 31 \text{ GeV}$ First direct evidence of gluons (1978)

ALEPH event $\sqrt{s} = 91 \text{ GeV}$ (1990)

Distribution of the angle, ϕ , between the highest energy jet (assumed to be one of the quarks) relative to the flight direction of the other two (in their cm frame). ϕ distribution depends on the spin of the gluon. \Rightarrow Gluon is spin 1 Spin 0 Spin 0 Spin 1 Spin 1 Spin 1 Spin 1 Spin 1 Spin 1 Spin 2 Spin 0 Spin 0 Spin 0 Spin 1 Spin 0 Spin 0 Spin 0 Spin 0 Spin 0 Spin 1 Spin 1

Evidence for Gluon Self-Interactions

Direct evidence for the existence of the gluon self-interactions comes from 4-jet events:

The angular distribution of jets is sensitive to existence of triple gluon vertex (lower left diagram)

qqg vertex consists of two spin 1/2 quarks and one spin 1 gluon ggg vertex consists of three spin-1 gluons

 \Rightarrow Different angular distribution.

Evidence for Gluon Self-Interactions

ALEPH 4-jet event

Experimental method:

- Define the two lowest energy jets as the gluons. (Gluon jets are more likely to be lower energy than quark jets).
- Measure angle χ between the plane containing the "quark" jets and the plane containing the "gluon" jets.

Gluon self-interactions are required to describe the experimental data.

Measurements of α_s

Measurements of α_s

Many other ways to measure α_s

Example: 3-jet rate $e^+e^- \rightarrow q\bar{q}g$

$$R_3 = \frac{\sigma(e^+e^- \to 3 \text{ jets})}{\sigma(e^+e^- \to 2 \text{ jets})} \propto \alpha_s$$

 α_s decreases with energy

 α_s runs!

in accordance with QCD

<ロト 4 部 ト 4 差 ト 4 差 ト 差 の Q</p>

Prof. Alex Mitov

7. QCD

Observed running of α_s

500

Summary

- QCD is a gauge theory, similar to QED, based on SU(3) symmetry
- Gluons are vector gauge bosons, which couple to (three types of) colour charge (r, b, g)
- Gluons themselves carry colour charge hence they have self-interactions (unlike QED).
- Leads to running of α_s , in the opposite sense to QED. Force is weaker at high energies ("asymptotic freedom") and very strong at low energies.
- Quarks and gluons are confined. Seen as hadrons and jets of hadrons.
- Tests of QCD
 - Evidence for colour
 - Existence of gluons, test of their spin and self-interactions
 - Measurement of α_s and observation that it runs.

Problem Sheet: q.15-16

Up next... Section 8: Quark Model of Hadrons