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EXAMPLES SHEET 2

11. a) The elastic form factors for the proton are well described by the form

G(q2) =
G(0)

(1 + |q2|/0.71)2

with q2 in GeV2. Show that an exponential charge distribution in the proton

ρ(r) = ρ0e
−λr

leads to this form for G(q2) (insofar as |q2| = |q2|), and calculate λ.

b) Show that, for any spherically symmetric charge distribution, the mean square radius is given by

〈r2〉 = − 6

G(0)

[

dG(q2)

d|q2|

]

q2=0

and estimate the r.m.s. charge radius of the proton.

c) The pion form factor may be determined in πe− scattering. Use the following data to estimate the

r.m.s. charge radius of the pion.

|q2| (GeV2) G2
E(q

2)

0.015 0.944 ± 0.007

0.042 0.849 ± 0.009

0.074 0.777 ± 0.016

0.101 0.680 ± 0.017

0.137 0.646 ± 0.027

0.173 0.534 ± 0.030

0.203 0.529 ± 0.040

0.223 0.487 ± 0.049
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DEEP-INELASTIC SCATTERING

12. The figure below shows a deep-inelastic scattering event e+p → e+X recorded by the H1 experiment

at the HERA collider. The positron beam, of energy E1 = 27.5GeV, enters from the left and the

proton beam, of energy E2 = 820GeV, enters from the right. The energy of the outgoing positron

is measured to be E3 = 31GeV. The picture is to scale, so angles may be read off the diagram if

required.

a) Show that the Bjorken scaling variable x is given by

x =
E3

E2

[

1− cos θ

2− (E3/E1)(1 + cos θ)

]

where θ is the angle through which the positron has scattered.

b) Estimate the values of Q2, x and y for this event.

c) Estimate the invariant mass MX of the final state hadronic system.

d) Draw quark level diagrams to illustrate the possible origins of this event. Using the plot overleaf of

the parton distribution functions xuV(x), xdV(x), xu(x) and xd(x), estimate the relative probabilities

of the various possible quark-level processes for the event. Note that the Q2 in the plot overleaf need

not be exactly the same as the Q2 in this event – Bjorken scaling requires only that it be similar. So

do not worry about any relatively small differences between the two Q2 scales.

[Neglect contributions from the heavier quarks s, c, b, t.]

e) Estimate the relative contributions of the F1 and F2 terms to the deep-inelastic cross section for the

x and Q2 values corresponding to this event.
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13. a) Show that the lab frame differential cross section d2σ/dE3dΩ for deep-inelastic scattering is related

to the Lorentz invariant differential cross section d2σ/dνdQ2 via

d2σ

dE3dΩ
=
E1E3

π

d2σ

dE3dQ2
=
E1E3

π

d2σ

dνdQ2

where E1 and E3 are the energies of the incoming and outgoing lepton, ν = E1 − E3, and Q2 =
−q2 = −(p1 − p3)

2. [ When you do this, make sure you understand that differential cross sections

transform as Jacobians, not as partial derivatives! ]

Show further that
d2σ

dνdQ2
=

2Mx2

Q2

d2σ

dxdQ2

where M is the mass of the target nucleon and x = Q2/2Mν.

b) Show that
2Mx2

Q2
· y

2

2
=

1

M

E3

E1

sin2 θ

2

and that

1− y − M2x2y2

Q2
=
E3

E1

cos2
θ

2
.

c) Show that the Lorentz invariant cross section for deep-inelastic electromagnetic scattering,

d2σ

dxdQ2
=

4πα2

Q4

[(

1− y − M2x2y2

Q2

)

F2

x
+
y2

2

2xF1

x

]

becomes
d2σ

dE3dΩ
=

α2

4E2
1 sin

4 θ/2

[

F2

ν
cos2

θ

2
+

2F1

M
sin2 θ

2

]

in the lab frame.

d) An experiment consists of an electron beam of maximum energy 20GeV and a variable angle

spectrometer which can detect scattered electrons with energies greater than 2GeV. Find the range of

values of θ over which deep-inelastic scattering events can be studied for x = 0.2 and Q2 = 2GeV2.

[You may find it helpful to determine E1 − E3 (fixed), and E1E3 in terms of θ, and then sketch the

various constraints on E1 and E3 on a 2D plot of E3 against E1.]

e) Outline a possible experimental strategy for measuring F1(x,Q
2) and F2(x,Q

2) for the above

values of x and Q2.
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HADRONS AND QCD

14. Imagine that the u,d and s quarks exist with their observed quantum numbers, except that they have

spin zero. Discuss in as much detail as you can the resulting spectrum of hadrons and their properties.

You should specifically consider the possible JP values of the meson multiplets, and the JP value

and multiplicity of the lightest baryon multiplet. Are these results compatible with the data ?

[Remember that bosons have the same parity as antibosons].

15. [ This question is based on a part of the course that has been moved into a non-examinable appendix.

Though the material is non-examinable, the question is retained on the example sheet as some students

may find it interesting. ]

a) Show that the short range interaction between the quark and antiquark in a meson is attractive if

the meson is in the colour singlet state

ψ =
1√
3
(rr + gg + bb)

but repulsive if the meson is in any of the colour octet states

ψ =
1√
6
(rr + gg − 2bb)

1√
2
(rr − gg) rg rb gr gb br bg .

b) Sketch the possible colour quantum numbers of a two-quark system on a plot of colour hypercharge

Y c against colour isospin Ic
3. Using ladder operators, or otherwise, show that the two-quark colour

states consist of a sextet plus a triplet, and determine the colour wavefunctions of each state. Show

that the strong interaction potential arising from single-gluon exchange between the two quarks is

repulsive for the colour sextet but attractive for the colour triplet. Why, if the potential is attractive,

are hadrons consisting of two quarks (“diquarks”) not observed ?

c) Use the baryon colour singlet wavefunction

ψ =
1√
6
(rgb− grb+ gbr − bgr + brg − rbg)

to show that the short range interaction between any pair of quarks in a baryon is attractive.

(i.e. show that the overall colour factor C is negative for, say, quarks 1 and 2 in the baryon.)
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WEAK INTERACTIONS

16. Following on from Question 9, show that, for a free particle spinor ψ:

ψLγ
µ 1
2
(1− γ5)ψR = ψRγ

µ 1
2
(1− γ5)ψL = ψRγ

µ 1
2
(1− γ5)ψR = 0

ψLγ
µ 1
2
(1− γ5)ψL = ψγµ 1

2
(1− γ5)ψ

where ψL ≡ 1
2
(1 − γ5)ψ and ψR ≡ 1

2
(1 + γ5)ψ. Explain the relevance of these results to the weak

interactions. What are the equivalent results for currents of the form ψγµ 1
2
(1 + γ5)ψ ?

17. a) In Question 5, the decay rate for π−→e−νe was found to be 1.28×10−4 times that for π−→µ−νµ,

whereas, on the basis of phase space alone, one would expect a higher decay rate to electrons. Explain

why the weak interaction gives such a small decay rate to electrons.

b) The Lorentz invariant matrix element for π− → µ−νµ decay is

Mf i =
g2W
4m2

W

gµνfπp
µ
1u(p3)γ

ν 1
2
(1− γ5)v(p4)

where p1, p3 and p4 are the 4-momenta of the π−, µ− and νµ, respectively, and fπ is a constant which

must be determined experimentally. Verify that this matrix element follows from the Feynman rules,

with the quark current uγµ(1− γ5)v taken to be of the form −fπpµ1 .

[ The free particle spinors u, v cannot be used for quarks and antiquarks in a hadronic bound state; a

quark current of the form given can be shown to be the most general possibility. ]

c) Show that (as in Question 9) the Lorentz-invariant matrix element squared is

|Mf i|2 = 2G2
Ff

2
πm

2
µ(m

2
π −m2

µ) .

[ Use the spinors u1, u2, v1, v2 for this calculation rather than the spinors u↑, u↓, v↑, v↓. Work in the π−

rest frame, and choose the 4-momenta of the µ− and νµ to be p3 = (E, 0, 0, p) and p4 = (p, 0, 0,−p),
with E =

√

p2 +m2
µ. ]

d) Show that the square of the non-invariant matrix element Tf i is proportional to 1− β:

|Tf i|2 =
G2

F

2
f 2
πmπ (1− β)

where β is the velocity of the µ−.
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DEEP INELASTIC SCATTERING

18. Find the maximum possible value of Q2 in deep-inelastic neutrino scattering for a neutrino beam

energy of 400GeV, and compare with m2
W.

19. The figure below shows the measured total cross sections σ(νµ + N → µ− + hadrons)/Eν and

σ(νµ + N → µ− + hadrons)/Eν for charged-current neutrino and antineutrino scattering, averaged

over proton and neutron targets.
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a) Draw Feynman diagrams for the quark-level processes which contribute to neutrino-nucleon and

antineutrino-nucleon scattering. (Neglect the s, c, b and t quark flavours).

b) Show that the parton model predicts total cross sections of the form

σνN ≡ 1
2
(σνp + σνn) =

G2
Fs

2π

[

fq +
1
3
fq
]

σνN ≡ 1
2

(

σνp + σνn
)

=
G2

Fs

2π

[

1
3
fq + fq

]

where s is the neutrino-nucleon centre of mass energy squared, and fq = fu + fd and fq = fu + fd
are the average momentum fractions carried by u and d quarks and antiquarks.

c) Estimate the average fractions of the nucleon momentum carried by quarks, antiquarks and gluons.

[Take GF = 1.166× 10−5 GeV−2.]
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20. The figure below shows measurements of the cross section dσ/dQ2 from the H1 experiment at HERA

for the neutral current (NC) processes e−p → e−X and e+p → e+X, and the charged current (CC)

processes e−p → νeX and e+p → νeX, with unpolarised incoming e+ or e− and proton beams:
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a) Draw Feynman diagrams for the quark-level processes which contribute to CC e−p → νeX and

e+p → νeX scattering. (Neglect the s, c, b and t quark flavours).

b) The HERA data extends to values of Q2 > m2
W. Starting from the parton model cross sections

d2σ/dxdy for (anti)neutrino-nucleon scattering derived in the lectures for Q2 ≪ m2
W, explain why

the CC cross sections can be written down directly as

d2σ

dxdQ2
(e+p → νeX) =

G2
Fm

4
W

2πx(Q2 +m2
W)2

x
[

u(x) + (1− y)2d(x)
]

d2σ

dxdQ2
(e−p → νeX) =

G2
Fm

4
W

2πx(Q2 +m2
W)2

x
[

u(x) + (1− y)2d(x)
]

c) Explain why the e−p CC cross section is always higher than the e+p CC cross section.

d) Explain why the CC cross sections become approximately constant as Q2 decreases, while the NC

cross sections grow indefinitely large. Account approximately for the observed slope of the NC cross

sections at low values of Q2.

e) Explain why the NC cross sections become similar in magnitude to the CC cross sections at high

values of Q2 ∼ m2
Z.

f) (optional) Explain why the two NC cross sections are equal at low Q2, but differ at high Q2.
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NUMERICAL ANSWERS

11. a) λ = 0.84GeV; b) 0.81 fm; c) ≈ 0.68 fm

12. b) x ≈ 0.09, Q2 ≈ 610GeV2, y ≈ 0.075; c) MX ≈ 78GeV

d) relative probabilities that scattering is from u, d, u, d are

u : d : u : d ≈ 0.73 : 0.12 : 0.12 : 0.04 .

e) the F1 term contributes only ≈ 0.3% of events.

13. d) 4.7◦ < θ < 21.3◦

15. b) sextet: rr, gg, bb, (rg + gr)/
√
2, (rb+ br)/

√
2, (gb+ bg)/

√
2;

triplet: (rg − gr)/
√
2, (rb− br)/

√
2, (gb− bg)/

√
2

18. (Q2)max ≈ 750GeV2

19. fq ≈ 0.41, fq ≈ 0.08, fg ≈ 0.51
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